

USING PREDICTIVE ANALYTICS TO DETECT MAJOR PROBLEMS IN
DEPARTMENT OF DEFENSE ACQUISITION PROGRAMS

THESIS

Austin W. Dowling

First Lieutenant, USAF

AFIT/GCA/ENC/12-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the United States Government
and is not subject to copyright protection in the United States.

AFIT/GCA/ENC/12-03

USING PREDICTIVE ANALYTICS TO DETECT MAJOR PROBLEMS IN
DEPARTMENT OF DEFENSE ACQUISITION PROGRAMS

THESIS

Presented to the Faculty

Department of Statistics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cost Analysis

Austin W. Dowling

First Lieutenant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCA/ENC/12-03

USING PREDICTIVE ANALYTICS TO DETECT MAJOR PROBLEMS IN
DEPARTMENT OF DEFENSE ACQUISITION PROGRAMS

Austin W. Dowling
First Lieutenant, USAF

Approved:

___________________________________ __________
Edward D. White, Ph.D (Chairman) Date

___________________________________ __________
Jonathan D. Ritschel, Maj, USAF (Member) Date

___________________________________ __________
C. Grant Keaton, 1 Lt, USAF (Member) Date

AFIT/GCA/ENC/12-03

iv

Abstract

 This research provides program analysts and Department of Defense (DoD) leadership

with an approach to identify problems in real-time for acquisition contracts. Specifically, we

develop optimization algorithms to detect unusual changes in acquisition programs’ Earned

Value data streams. The research is focused on three questions. First, can we predict the

contractor provided estimate at complete (EAC)? Second, can we use those predictions to

develop an algorithm to determine if a problem will occur in an acquisition program or sub-

program? Lastly, can we provide the probability of a problem occurring within a given

timeframe? We find three of our models establish statistical significance predicting the EAC.

Our four-month model predicts the EAC, on average, within 3.1 percent and our five and six-

month models predict the EAC within 3.7 and 4.1 percent. The four-month model proves to

present the best predictions for determining the probability of a problem. Our algorithms

identify 70% percent of the problems within our dataset, while more than doubling the

probability of a problem occurrence compared to current tools in the cost community. Though

program managers can use this information to aid analysis, the information we provide should

serve as a tool and not a replacement for in-depth analysis of their programs.

AFIT/GCA/ENC/12-03

v

 To my wife and daughter for their support and patience during this process, and for listening to

me while I talk endlessly about how much I love Excel.

vi

Acknowledgments

I would like to thank Dr. White, my thesis advisor, for providing me the tools and the guidance

to pursue an interesting area of research. Dr. White enabled me to reach my full potential by

guiding me and allowing me to pursue methods and research questions that interest me. I would

like to thank the other members of my committee, Major Ritschel and First Lieutenant Grant

Keaton, for providing their unique insight into my research.

 Austin W. Dowling

vii

Table of Contents

 Page

Abstract .. iv

Acknowledgments.. vi

List of Tables .. x

I: Introduction ... 1

 Our Contribution ..2

II: Literature Review .. 5

 Previous Research ..8

 Forecasting ...9

 Standardized Coefficients ..11

 Stepwise Regression ..11

 Time Series Analysis ...13

 Cutting the Plane ..14

 Simplex Method ...15

III: Methodology ... 18

 Data Source ..18
 Data Limitations. ... 21

 Overall Algorithm Flow ..24

 Variable Selection ..25
 Cutting the Plane ... 26
 Simplex Method .. 27
 Variable Removal ... 32

 Determine Optimum Optimization Order ..33

 Minimizing the MAPE ..34

 Generating Control Chart Bounds ...34

 Validation ..36

viii

 Page

IV: Results .. 38

 Model Predictions ...38

 Control Chart ..45

V: Conclusions .. 50

 Discussion of Results ...50

 Implications of Findings ..52

 Follow on Research ...53

Appendix A: Example Format-1 (AEHF Program) .. 54

Appendix B: EVM Equations (Keaton 2011) ... 57

Appendix C: Breakout of Data ... 58

Appendix D: Complete List of Initial Variables ... 59

Appendix E: List and Definition of Variables for Backwards Stepwise Regression 63

Appendix F: Code for Algorithm .. 71

Appendix G: Cooks Distance Plots... 118

Bibliography ... 119

ix

Table of Figures

 Page

Figure 3.1: Cutting the Plane Example ... 27

Figure 3.2: Modified Simplex Method Initial Procedure .. 28

Figure 3.3: Modified Simplex Method Test SSE<Previous SSE ... 29

Figure 3.4: Modified Simplex Method Test SSE>Previous SSE ... 30

Figure 4.1: Histograms of Model Error .. 43

Figure 4.2: Histograms of Model APE’s .. 44

Figure 4.3: 6-Month Control Chart Using Four-Month Predictions ... 48

Figure 4.4: Control Chart Using Four-Month Predictions Zoomed ... 49

x

List of Tables

 Page

Table 3.1: Data Available in DCARC .. 19

Table 3.2: Number of Programs by Service Type .. 19

Table 3.3: Number of Programs by Type of Program .. 20

Table3.4: Programs by Months of Data .. 21

Table 4.1: Results of Prediction Models ... 39

Table 4.2: Equation for Four-Month Prediction Results .. 40

Table 4.3: Equation for Five-Month Prediction Results ... 41

Table 4.4: Equation for Six-Month Prediction Results ... 42

Table 4.5: Control Chart Results .. 46

Table 4.6: Breakout of Probabilities ... 47

Table 4.7: Comparison of Our Results to Community Standard .. 49

1

USING PREDICTIVE ANALYTICS TO DETECT MAJOR PROBLEMS IN DEPARTMENT

OF DEFENSE ACQUISITION PROGRAMS

I: Introduction

 DoD acquisitions demands qualified personnel to perform cost estimating and to track

program performance. To maintain the current standard of DoD acquisitions, the acquisition’s

community must create new ways to complete the same task with fewer resources. In 2005, in

an effort to cut costs, the Air Force reduced cost estimating personnel force to its lowest levels

ever (Morin, 2010). In response to these levels, the Air Force Acquisition Improvement Plan

sets out to re-affirm the acquisition management for the Air Force. The Air Force is currently

rebuilding its acquisition force; however, in the meantime, the workload for the acquisition force

exceeds the capabilities (Morin, 2010). The automation of tasks reduces the workload while still

maintaining the performance that the field demands. Automating problem detection increases

decision maker’s awareness and decreases the likelihood of a program experiencing a cost

overrun.

 A prolific academic in the field of Earned Value Management (EVM) who has written

over 20 articles, David Christensen (1992), shows that once a program exceeds the 20 percent

completion point it cannot recover from a cost overrun. Early problem detection enables a

manager to prevent these overruns and increase the stability of their program. Christensen

(1992) also demonstrates in his research that if a contract portrays stability at the 50 percent

completion point, it will remain stable until completion. The DoD uses Earned Value predictions

to track their programs and prevent program instability.

2

 Analysts currently use EVM to monitor performance of an acquisition contract. This

analysis requires a large amount of time and a great understanding of EVM to determine the state

of the contract. Analysts use various measures and ratios to develop their own estimates of

future program costs. The analysts then compare these estimates to the estimates provided by the

contractor to establish whether a problem might occur in their program (Headquarters Air Force

Material Command, Financial Management, 1994). This comparison provides EVM analysts

with an understanding of the overall direction of their program.

 Using EVM data to determine the quality of a program is not a new idea. Analysts

currently use various Earned Value techniques to evaluate their programs. Most analysts use

ratios or charting techniques to assess trends in their programs. We address specific EVM

further in our Literature Review Chapter. Keaton (2011) first addressed the use of an automated

algorithm to evaluate a program. His algorithm compares various Earned Value ratios and

relates changes in those ratios over time to significant changes in the estimate at complete

(EAC). Keaton (2011) shows that an automated Earned Value management tool can detect

future problems in acquisition programs; however, he did not provide significant insight to the

relationships between various Earned Value data. We provide further detail regarding Keaton’s

methods in the next chapter.

Our Contribution

 Analysts must synthesize all relevant information to ensure they provide decision makers

with accurate and relevant information. To present decision makers with the best information,

analysts need to understand the relationships that exist within the data. Our research not only

provides the appropriate relationships to warrant the best information, but we also provide a

methodology to determine those relationships within data.

3

 Our data-mining algorithm, which we use for determining Earned Value relationships,

can be applied to any data set. The methodology and procedures of our algorithm serves as a

unique way to determine relationships and generate an accurate prediction model. Our algorithm

not only selects the best variables to use in a model, it also adjusts the variables themselves to

make them as predictive as possible. We address the data-mining algorithm in further detail in

our Methodology Chapter. The outputs and findings of our algorithm prove significant for

analysts and decision makers.

 The results of this research provide decision makers with a tool to forecast the EAC

measure up to six months into the future. We use those estimates to determine when, and with

what likelihood, a problem will occur in an acquisition contract. Our research builds upon the

original research established by Keaton (2011) and improves accuracy and the breadth of the

research. The findings we provide facilitate a decision maker’s understanding of the programs’

status under his or her control. This increase in information allows program managers the

needed oversight to correct instability issues before their programs reach 20 percent completion.

Our research will not replace in-depth analysis that the field requires; however, we feel that our

results will decrease the amount of oversight required to ensure a successful program.

Our research answers the following questions:

1. Can we provide an accurate point estimate for future contractor provided EAC’s?

2. Can we detect future major changes to the EAC?

3. If we detect major changes to the EAC, can we provide decision makers with a timeframe

and probability of those major changes to the EAC?

4

 Chapter two, Literature Review Chapter, provides a brief overview of the current state of

EVM and how the DoD acquisitions community uses it to monitor programs. The Literature

Review Chapter presents a background of the previous research done by Keaton (2011). The

chapter finishes with a background on the tools we use to provide predictions of the EAC. The

Methodology Chapter reviews our method for determining our EAC predictions, how we detect

problems, and how we use these detections to determine the probability of a problem occurring.

In the Results Chapter, we present our findings. The Conclusions Chapter reviews our results

and discusses the implications of our findings to the Department of Defense (DoD) and presents

ideas for future research.

5

II: Literature Review

 Cost growth plagues the DoD and leads to major budget problems. Analysts usually

measure cost growth as a ratio of an early final cost estimate to the current estimate or the actual

final cost of a program (Arena, Leonard, Murray, & Younossi, 2006). These estimates influence

the decisions program managers make throughout the course of their project. Managers use the

initial estimate to formulate a budget; therefore, if the program goes over the estimate, it exceeds

the budget as well. Cost growth, as previously defined, proves rampant within the Air Force.

RAND (2006) analyzed 220 completed weapon system programs from 1968 to 2003 and found a

46 percent average cost growth among all the programs analyzed. They also found that the

longer duration programs had greater cost growth (Arena, Leonard, Murray, & Younossi, 2006).

For example, the Spaced Based Infrared System currently exceeds the initial budget estimate by

over 160% (Younossi & et al., 2007). Project management seeks to prevent cost growth or

provide insight to future project changes.

 In the late 1950’s and early 1960’s almost the entire aerospace and defense industries

used project management (Kerzner, 2009). The DoD and construction companies started the use

of project management techniques to enable them to track the status of their program (Kerzner,

2009). Managers use a variety of techniques to manage projects such as critical path analysis,

risk monitoring and control, precedence networks, graphical evaluation and review technique,

and many others (Kerzner 2009). EVM, another project management technique, gives project

managers the ability to evaluate the status of their programs. The DoD uses EVM to track cost,

schedule and technical performance of a contract. EVM uses ratios and different methods to

predict the final cost of a program as well as track the status of the program. The Format-1 of

6

the CPR contains all the top-level EVM data we use to evaluate programs. For example, the

Format-1 provides the Actual Cost of Work Performed (ACWP), broken out by work breakdown

structure (WBS) level as well as all levels combined for the whole program. In our analysis, we

use the combined levels that the Format-1 provides. Reference Appendix A for an example

Format-1.

 Earned Value expresses the amount of work done and the work remaining in monetary

terms. In essence, EVM expresses a project’s completeness in terms of cost or time (Erdogmus

2010). According to Bosch and Küttler (2011), practitioners of EVM, “The motivation for

introducing EVM arises because project tracking often separates schedule monitoring from cost

analysis” (Bosch & Küttler, 2011). Bosch & Küttlers’ EVM knowledge derives from the

Wendelstein 7-X project. They implemented EVM tools to monitor the Wendelstein 7-X project,

a nuclear fusion reactor. The two found it difficult to establish a baseline schedule and break that

schedule into definable packages. Additionally, they found it difficult when technical changes

arose in the project. Overall, the two found EVM extremely versatile; although, they noted that

managers must accompany EVM with other monitoring tools (Bosch & Küttler, 2011). This

example is in line with the governments beliefs about EVM as provided in The Guide to Analysis

of Contractor Cost Data.

 The government requires the use of a DoD established system (the Cost/Schedule Control

System Criteria-compliant management system) for the following: procurement contracts,

modifications in excess of $250 million, or the test and evaluation phase in excess of $60

million. This system indicates work progress; relate cost, schedule, and performance; provide

valid, timely, and auditable data; and provide a summarization of the information (Headquarters

7

Air Force Material Command, Financial Management, 1994). The system provides the

information for the EVM analysis currently done in the acquisition community.

 The Guide to Analysis of Contractor Cost Data provides an acquisition analyst with the

necessary tools to evaluate CPRs and it acts as a manual for them to asses programs. The

manual describes the data, which the contractor provides via the Format-1 of the CPR. Analysts

use the cumulative ACWP, cumulative budgeted cost for work performed (BCWP), cumulative

budgeted cost of work scheduled (BCWS), and the EAC to asses a programs performance

(Headquarters Air Force Material Command, Financial Management, 1994). The manual

presents the ratios, using the data from the Format-1, to evaluate cost and schedule reporting:

schedule performance index (SPI), cost performance index (CPI), to complete performance index

(TCPI), percent complete, percent spent, percent scheduled, and others (Headquarters Air Force

Material Command, Financial Management, 1994). We address the use of these ratios further in

the Methodology Chapter.

 The Guide to Analysis of Contractor Cost Data further discusses ways for an analyst to

determine if a problem exists in a program. According to the manual,

Thresholds are established requiring a variance analysis for any cost or schedule variance
that exceeds a certain percentage of BCWS or BCWP and/or exceeds an established
dollar minimum….When initially establishing the thresholds, it may be advisable to
provide for tightening these thresholds as the contract progresses” (Headquarters Air
Force Material Command, Financial Management, 1994).

The manual also describes ways to forecast changes to the EAC as well as ways to use ratios,

such as CPI and SPI, to determine possible problems. It recommends charting the ACWP,

BCWS, and BCWP as well as the ratios, previously addressed, over the time of the project to

visually display and analyze the changes. By doing this, the analyst determines the overall

performance of a project. The government requires the program manager to define significant

8

variances and thresholds to determine when a program has a problem (Headquarters Air Force

Material Command, Financial Management, 1994). The manual does not tell analysts which

method of EAC calculation provides the most accurate results, nor does it provide a numerical

way to forecast a problem in the program. The manual does not present a way to use changes in

ratios or monthly data; rather, it only uses point estimates or three month averages to forecast the

EAC. We list all the ratios and variables the manual references in Appendix B. Keaton (2011)

addresses this concern with his time series analysis.

Previous Research

 Keaton (2011) analyzed the CPI and SPI with time series Autoregressive/Integrated/

Moving Average (ARIMA) models. He showed that an analyst could model the CPI and SPI

through a first difference model (Keaton et al., 2011). Using a control chart to monitor the CPI

and SPI, he detected potential problems in a program, which therefore created different bounds

of the control chart. He defines a problem as an absolute change in the EAC greater than five

percent from one month to the next. When a reported CPI or SPI fell out of the expected range,

his algorithm demonstrated a time-lagged relationship to future problems.

 He looked at different standard deviations for the bounds of the control chart, from 0.5

standard deviations to 3 standard deviations, where the standard deviation updates with new

information. He found that the higher the standard deviation the less likely a false positive, but

the greater likelihood for a missed detection. In addition, he found no relationship between

consecutive detections and the likelihood of a significant change in the EAC (Keaton et al.,

2011). His algorithm does not provide analysts with the information of when or with what

probability a problem will occur. In addition, his algorithm does not forecast the magnitude or

direction of the change in the EAC, only that a change of greater than five percent will happen

9

within a year of the detection. We use his findings and take them a step further by forecasting

the EAC.

 Many different industries use forecasting and time series analysis to gain insight into

future events. Analysts classify forecasting problems by time: short-term, medium-term, and

long-term. Short-term forecasts sometimes only span a few days while log-term forecasts can

extend beyond a few years. To generate forecasts, researchers use past data to generate

statistical models to predict a future event. These forecasts usually influence the strategic

planning of the various fields. When analysts try to predict too far beyond the scope of the data,

poor forecasts ensue. For example, in 1966 the Wall Street Journal predicted, “Computers are

multiplying at a rapid rate. By the turn of the century there will be 220,000 in the U.S”

(Montgomery, Jennings, & Kulahci 2008). In actuality, 54 million households possessed at least

one computer representing over half of all households (U.S Department of Commerce 2001). To

provide useable forecasts to decision makers, analysts need to possess at least background of

basic forecasting principles.

Forecasting

 Quantitative forecasting enables researchers to anticipate future outcomes and apply

probabilities to future events (Makridakis, Wheelwright, & Hyndman, 1998). Decision makers

only need to use forecasts for uncertain and uncontrollable events (Armstrong, 2001).

Researchers constantly work to improve forecasting techniques and errors in forecasting

decrease as a result. For example, before 1987, analysts predicted 27 percent of tornados

compared to 59 percent by 1997 (Armstrong, 2001). All forecasting models follow a universal

form of Equation 2.1:

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑒𝑟𝑟𝑜𝑟 (2.1)

10

Quantitative forecasting relies on two principals. First, the past events must be quantifiable.

Second, the researcher expects the pattern to repeat in the future or the data presents evidence

that the pattern repeats (Makridakis, Wheelwright, & Hyndman, 1998).

 Armstrong (2001) presents four principles to follow in his book Principles of

Forecasting:

1. Use all the data possible.

2. When developing quantitative models, researchers must make the models simple.

3. Do not use personal judgment to revise predictions from forecasting models.

4. Researchers should investigate theory prior to developing quantitative models.

When analysts do not follow these principles, their models can produce poor predictions. For

example, prior to the energy crisis of 1970, researchers did not use all the available data to

develop their models and the model produced results, which led to the energy crisis (Armstrong,

2001). In addition, no forecasting at all leads to uninformed decisions; therefore, it proves

essential to provide decision makers with reliable insight to future events. Researchers use many

different methods to forecast events; in our research, we use linear regression.

 Linear regression, commonly used as a mathematical forecasting technique, is one of the

widely used and most common forecasting techniques. It provides a way of relating various

attributes, which act in a predictable manner, to a response or outcome. Linear regression uses

explanatory variables to forecast a response variable. Time series analysis, through linear

regression, uses previous responses to predict future response (Shumway & Shumway, 2000).

Equation 2.2 represents a general form of linear regression equation (Gross, 2003).

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑝𝑋𝑝 + 𝜀 (2.2)

11

In Equation (2.2), “Y” represents the response variable with a given time unit and “𝛽𝑝”

represents the coefficient of the explanatory variable. The coefficient portrays the average effect

on the response per unit increase in the “X” variable associated with the respective coefficient.

To compare parameter estimates and establish which explanatory variables have the most impact

on the response variable, analysts typically use standardized coefficients.

Standardized Coefficients

 Standardized coefficients represent the relative impact of the explanatory variable on the

model. Standardizing the variables requires that all variables portray a value of one standard

deviation, which enables an even comparison between variables. Equation 2.3 demonstrates how

to standardize a variable.

𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = 𝑦𝑖−𝑦�
𝑠

 (2.3)

In Equation 2.3, “𝑦𝑖” represents the individual value for the variable, “𝑦�” represents the average

of all “y” variables, and “s” portrays the standard deviation within the variable. This equation

turns the variables, used in the “X” matrix of a regression, into variables with the same scale.

This allows for an equal comparison between the variables, which enables analysts to determine

which variables influence the model the most. (Wiley, 2002). We use standardized coefficients

in our stepwise regression algorithm. The standardized coefficients serve as a way to establish

variables to remove; we go into further detail about how we remove variables from our stepwise

regression in our Methodology Chapter.

Stepwise Regression

 Three types of stepwise regression exist: forward, backward and mixed stepwise

regression. In forward regression, the algorithm starts with no variables, and then adds one of

12

the variables to the model. If the variable improves the model, it stays in the model. Contrarily,

if the variable fails to improve the model, the algorithm does not include it. All three stepwise

regressions use a t-test to determine significance. For a forward regression, the analyst sets the

significance levels to determine if a variable improves the model (Bart, Flinger, & Notz, 1999).

This process repeats until the algorithm tests every variable. Backward stepwise regression

works the opposite of forward regression. The backward stepwise regression enters all the

variables into the model and removes the variable with the greatest p-value until all the variables

in the model meet the analyst’s p-value requirements. The algorithm repeats this process until all

the variables’ p-values meet the minimum cut-off p-value. In mixed, also referred to as full

stepwise, the stepwise algorithm alternates between adding and removing variables. The mixed

stepwise algorithm will add in variables removed earlier and test their significance (Bart, Flinger,

& Notz, 1999). Each of the three stepwise techniques presents different advantages and

disadvantages.

 Backward stepwise regression presents advantages over forward regression, “backward-

deletion variations is often preferable to the forward-selection variation because of its ability to

deal with suppressor effects, which occur when a predictor has a significant effect but only when

another variable is held constant” (Andrew, Pedersen, & McEvory, 2011). Backward stepwise

regression requires more computational power than forward regression but less than the mixed

regression (Bart, Flinger, & Notz, 1999). When analysts require more exploratory research,

stepwise regression can determine the significance of new relationships (Andrew, Pedersen, &

McEvory, 2011). For our analysis, we use time series data within our own backward stepwise

regression.

13

Time Series Analysis

 An analyst must first perform preliminary work prior to making a time series model. The

analyst must think about the following prior to model building:

1. Ask the right questions to get background information

2. Determine clear objectives to produce the forecast

3. Establish exactly how the forecast will be used

4. What variables should be included/excluded (Chatfield, 2000)?

Analysts must also avoid unfairly improving a model by:

1. Using the validation data while making the model

2. Fitting multiple models to the test set and choosing the best results

3. Using variables that contain data from the time period of the prediction (Chatfield,

2000).

The success of time series models depend upon identifying the underlying trends and the

relationships of the inputs (Peterson & Pi, 1994). The integration of Chatfield’s (2000)

procedures enables an analyst to study the dependency between the response variable and the

prediction variables. To incorporate time series data into the linear regression in Equation 2.2 an

analyst replaces the “X” variables with previous “Y” variables shown in Equation 2.4.

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + ⋯+ 𝛽𝑖𝑌(𝑡−𝑖) + 𝜀 (2.4)

The “𝛽” parameters in Equation 2.3 represent the average impact on the predicted time period

for the corresponding “𝑌𝑡−𝑖”. In a time series analysis, the predictive variables can take on

different values other than previous “Y” values; however, all the variables must only include

previous data. For example, in a time series model a researcher might use the standard deviation

14

of the “Y” values from four periods ago to the last period. Time series assumes a relationship

exists between previous data and future data.

 When researchers extrapolate beyond the data, they run the risk that their model will act

differently in the future (Montgomery, Peck & Vining, 2011). Therefore, researchers must build

the most accurate model to ensure viable future predictions. In order to build the most accurate

model, a researcher must determine the global and local minimums of the error term. Cutting the

Plane and the Simplex Method are two widely used linear programming techniques to solve

complex problems and develop the most accurate models. Many businesses, in numerous fields,

use linear programming to solve complex problems. A survey of Fortune 500 companies found

that 85% of respondents use linear programming in their businesses (Harshbarger & Reynolds,

2008). These linear programming techniques improve the accuracy and the value of the

forecasts.

Cutting the Plane

 The Cutting the Plane method is a tool used to solve convex optimization problems.

Convex optimization problems present themselves when no analytic solution exists. The surface

of a convex optimization problem can take on both convex and concave or just a concave shape.

Many different solutions exist in a convex optimization problem (Boyd & Vandenberghe, 2004).

The cutting plane algorithm seeks to determine the global minimum or maximum. Different

cutting plane methods exist. Ralph Gomory (1960), a recognized American mathematician,

developed a method referred to as the fractional method. In the fractional method, the term an

analyst optimizes changes through equal fractional cuts to determine the lowest or highest value,

which the analyst optimizes. The fractional cutting method ensures that the analyst determines

the true optimal solution; however, to ensure this convergence, the method requires a large

15

number of cuts (Batson, Chen, & Dang, 2010). Analysts use the Cutting the Plane method in

such fields as integer programming and linear programming.

 Analysts use these algorithms to solve two common optimization problems, the traveling

salesman problem and the linear ordering problem (Floudas, 2001). According to Gutin and

Punnen, “The traveling salesman problem is to find a shortest route of a traveling salesperson

that starts at a home city, visits a prescribed set of other cities and returns to the starting city”

(Gutin & Punnen, 2002). Mitchell and Borchers (1998) describe a real world example of the

linear ordering problem.

As an example of the aggregation of individual preferences, consider a tournament
between a number of sports teams, where each team plays every other team. We wish to
determine which team is the best, which is second best, and so on. If Team A beats Team
B then Team A should finish ahead of Team B in the final ordering. However, it may be
that Team B beat Team C, who in turn beat Team A. Therefore, it is not generally a
simple matter to determine the final ordering. We could just count the number of
victories of each team, but this may not truly represent the relative strength of some
teams, and it may well lead to ties in the ordering. Therefore, we usually take the margin
of victory into account when determining the final ordering (Mitchell & Borchers, 2000).

We go into further detail as to how we implement the Cutting the Plane method in our

Methodology Chapter of this paper. After using a method for determining the approximate

location of the global minimum or maximum, we use a modification of the Simplex Method to

determine the local minimum. We assume the local minimum equals the global minimum since

the local minimum resides near the approximate location of the global minimum, which we

derive from the Cutting the Plane algorithm.

Simplex Method

 The Simplex Method is a tool for finding the local minimum or maximum. The method

adapts itself to the local landscape in order to find the minimum or maximum. The method does

not rely on derivatives or advanced math and is computationally compact. The method only

16

requires that the surface present a continuous function. (Mead & Nelder, 1965). Nelder and

Mead define the function value, 𝑦𝑖, for the minimization of a function at 𝑃0,𝑃1 …𝑃𝑛 points in n-

dimensional space, which defines the “simplex”. Equation 2.5 represents the general form of

the equation:

𝑃∗ = (1+∝)𝑃�−∝ 𝑃ℎ (2.5)

Nelder and Mead describe the Simplex process,

Where “∝” is a positive constant, the reflection coefficient. Thus 𝑃∗is on the line joining
𝑃ℎ and 𝑃�, on the far side of 𝑃� from 𝑃ℎ with [𝑃∗𝑃�]. If 𝑌∗ lies between 𝑦ℎ and 𝑦𝑖, then
𝑃ℎis replaced by 𝑃∗ and we start again with the new simplex. If 𝑦∗ > 𝑦𝑖, i.e. if reflection
has produced a new minimum, then we expand 𝑃∗ to 𝑃∗∗ by the relation 𝑃∗∗ = 𝛾𝑃∗ +
(1 − 𝛾)𝑃�. The expansion coefficient 𝛾, which is greater than unity, is the ratio of the
distance [𝑃∗∗𝑃�] to [𝑃𝑃�]. We then accept 𝑃∗∗ for the 𝑃ℎ and restart (Mead & Nelder
1965).

After the algorithm finishes, the “P” value represents the local minimum for the function (“Y”).

Harshbarger and Reynolds describe the method in simple terms, “This method gives a systematic

way of moving from one feasible corner of the convex region to another in such a way that the

value of the objective function increases until an optimal value is reached or it discovered that no

solution exists” (Harshbarger & Reynolds, 2008). Analysts first used the Simplex Method when

dealing with scheduling problems that arose from the 1948 Berlin airlift. The analyst maximized

the amount of goods delivered with various constraints. Since then, analysts use the Simplex

Method to solve many different optimization problems across a large variety of businesses

(Harshbarger & Reynolds, 2008). We provide further detail for the use and simplification of the

Simplex Method in the Methodology Chapter.

 In the next chapter, we detail how we collect our data, its limitations, and its breakout.

We explain how we separate our data, which enables us to validate our results. Subsequently,

we review the procedures we use to determine the optimum models to predict the contractor

17

provided EAC. We provide an in-depth review of the process we use to establish our variables

and the parameter estimates that go along with those variables. After describing our algorithm,

we detail the steps we take to use our model outputs to generate probabilities of a problem

occurrence. Finally, we conclude the chapter with our procedures for establishing the validity of

our results.

18

III: Methodology

 This chapter details our procedures for using Earned Value data to forecast potential

problems in acquisition programs. We first describe our data set, its limitations, the measures we

extract from it, and how we standardize the data prior to developing our model. Then, we

explain our optimization techniques: Cutting the Plane, the modified Simplex Method, and

Ordinary Least Squares (OLS), into our model building process to ensure we select the most

predictive explanatory variables. We then discuss how we use our model outputs from our four

to six-month predictive models to forecast the contractor EAC, and how we use those forecasts

to generate a control chart that predicts the likelihood of a problem occurrence. We define a

problem as an absolute five percent change in the EAC, the same as Keaton (2011). We finish

this section with a review of how we validate our models and control chart.

Data Source

 We obtain all our data from the Defense Cost and Resource Center (DCARC). This

database stores the acquisition contract information for major acquisition programs. We use the

CPRs provided by the contractor to obtain our data. These CPRs come in many formats:

Portable Document Files (PDF), Hyper Text Markup Language (HTML), Excel, and Extensible

Markup Language (XML). We only analyze at the PDF, HTML and Excel files. We do not use

XML files because we do not possess the unique program the contractors use to create them and

therefore cannot extract the data.

 We initially search DCARC to obtain possible acquisition category 1D (ACAT ID)

programs to collect. We limit ourselves to using ACAT ID programs because these programs

contain the most oversight and cost the most money, which, in turn, cause the greatest

19

consequences when a major problem occurs. We use all the DCARC data except when the

program contains less than 10 consecutive months of data or we encounter unreadable data. We

find 37 unique usable programs or sub-programs containing 1304 months of data; Appendix C

lists the data by program. Table 3.1 contains all possible DCARC data. The “All Programs” row

of the table refers to the programs within DCARC that contain CPR data and the “ACAT ID”

row refers to how many of the total programs are ACAT ID. The “useable” row represents how

many programs contain enough data, in the right format, and do not contain major data gaps of

the ACAT ID programs. Our data covers programs from all the services and spans different

types of programs with dates ranging from September 2007 to August 2011. Refer to Table 3.2

for the breakout of programs by service type and Table 3.3 for a breakout by type of program.

Table 3.1: Data Available in DCARC

Category
Number of
Programs

All
Programs 118
ACAT ID 64
Useable 37

Table 3.2: Number of Programs by Service Type

Service Number of Programs

AF 14

Navy 8

Army 7

Joint 7

Marine 1

20

Table 3.3: Number of Programs by Type of Program

Type Number of Programs

Plane 10

Comm. 9

Satellite 5

Missile 3

Helicopter 3

Radar 2

Ship 2

Facility 2

Vehicle 1

 To ensure the accuracy of our models, we create a validation set of data, before starting

our analysis. We use a 20 percent stratified random sample from our original data set. We

ensure that 20 percent of the data comes from “small” programs, less than 30 months of data,

“medium” programs, between 30 and 40 months of data, and “large” programs, more than 40

months of data. For instance, if we have 10 small programs we ensure we use two of those

programs for the validation set. We use Excel’s® random number generator to choose which

programs we use in our validation set. We use eight programs for validation containing 276

months of data. This represents 21.6 percent of the programs and 21.0 percent of the months of

total data. Table 3.4 depicts the programs size and if we use them for analysis or validation.

Reference Appendix C for a complete breakout of our validation set.

21

Table 3.4: Programs by Months of Data

Small Programs
(Less than 30

Months of Data)

Medium Programs
(30-40 Months of

Data)

Large Programs
(More than 40

Months of Data)
Number of Programs
(Analysis)

9 7 13

Number of Programs
(Validation)

2 3 3

 Data Limitations

 Our data faces four unique limitations. An explanation of how we addressed each

limitation is provided. We provide an explanation of how we address each limitation. Currently,

DCARC is the only database that provides complete CPR Format-1 data. Therefore, our first

limitation is that we only collect data from one source; however, DCARC compiles data from

multiple contractors and multiple sources so it only appears that we have one source of data. For

our second limitation, we come across one-month gaps within a program, where DCARC does

not provide data. Ten one-month gaps exist in our data set, which accounts for less than one

percent of the data. To address this limitation, we use a linear approximation to fill the hole in

the data. For example, if DCARC does not provide CPR data for February 2010, but DCARC

presents CPR data for January and March of 2010, to determine the value of February of 2010

we use the average of January and March 2010. For instance, if January presents an ACWP of

1000 dollars and March presents an ACWP of 1200 we use 1100 dollars for February’s ACWP.

We repeat this procedure for all the data we use in our algorithm, which we discuss in further

detail later in this chapter. A linear approximation will reduce the variability. Major gaps in our

data, larger than one month, present our third limitation; if DCARC does not provide more than

one month of consecutive data, we stop analyzing the program. For example, if a program has

consecutive data from January of 2008 to May 2010 and data from August 2010 to February

22

2011, we exclude the data from August 2010 to February 2011. Sometimes the data DCARC

provides does not cover the entire program. Meaning DCARC might only provide the first 40

consecutive months of data when the actual program lasted 50 months. Our final limitation deals

with the limited variance within our response value.

 If we use less than a four-month prediction, the response values, the ratio of the EAC’s

(refer to Equation 3.1), do not provide enough variation to determine statistically sound

parameter estimates. Meaning, our parameter estimates will depend on only a few months of

data. Therefore, the data forces us to predict no less than four months out.

EAC4−6 Months ahead
EACCurrent Month

 3.1

For instance, if we only predict one month out, the data only presents the change for one datum;

however, if we predict four months into the future, the data presents us with four opportunities to

detect the pattern that relates the change. For example, if we predict four months into the future

and a major change occurs in month nine, our response variable has months five through eight to

detect that pattern relating to the change; contrarily, a one-month prediction would only have

month eight to detect the pattern. Essentially, the more opportunities to predict a change in the

EAC, the better the chance there is for us to determine the pattern within the data. In addition,

our data contains 67 instances where the contractor provided EAC changes by greater than an

absolute five percent, (our definition of a problem), from one month to the next. We lose 12 of

the 67 instances because they occur in the beginning of program, which resides outside the

prediction window of our models.

Response and Explanatory variables

 As previously discussed, we obtain all of our data from DCARC for our analysis. We

specifically use the Format-1 data from the CPRs that the contractor provides to DCARC. The

23

Format-1 data consists of Earned Value data for the current period, cumulative, and at complete

values for each WBS element. Since we provide predictions and problem detections at the

overall program level, we use top-level WBS data. Top-level refers to using the summation of

all the different WBS levels for each component. For example, we sum all the different WBS

BCWP components to get the top-level BCWP. From the Format-1, we collect the following

earned value data: contractor provided EAC (best, worst, and most likely), cumulative BCWP,

cumulative BCWS, and cumulative ACWP.

 For our response variable (𝑦), we use a ratio of the most likely EAC, reference Equation

3.1. Our model uses three different ratios of four, five, or six month out predictions. For our

explanatory variables (𝑥′𝑠), we use ratios; which we derive from the cumulative BCWP,

cumulative BCWS, and cumulative ACWP. Refer to Appendix B for definitions if needed.

These ratios, for both the response variable and the explanatory variables, standardize the

variables between our different programs, which enables us to compare multiple programs at the

same time.

 We initially create 148 variables to consider, shown in Appendix D. To address the large

magnitude of variables, we perform an initial screening to reduce the number of explanatory

variables to a useable number. To reduce the number, we perform a regression analysis between

the most likely EAC and the explanatory variables, only using those variables with a p-value less

than 0.1 (our significance level). This procedure reduces the number of explanatory variables to

30 variables. Appendix E contains a breakout of our 30 variables and the equations we use to

derive them. Later in this chapter, we go into more detail regarding our initial screening process

along with how we arrive at our final explanatory variables for their respective models.

24

Overall Algorithm Flow

 To provide a better understanding of our algorithm, reference Appendix F for the Visual

Basic code, we outline its flow:

I. Initial Screening – Use a mixed stepwise regression to reduce the number of variables

from 148 to 30. We perform this procedure one time prior to starting the algorithm.

II. Reduce the Number of Significant Variables from 30 to 12, including the intercept (to

keep the model simple). The algorithm performs the steps within this procedure until

the variables meet the significance level and quantity.

a. Optimize the Variables

i. Cutting the Plane (using OLS)

ii. Modified Simplex (using OLS)

b. Remove a Variable

i. Determine if all the variables meet the required significance level.

1. If the variables all meet the required significance, remove the

variable with the least impact to the model.

2. If the variables do not meet the required significance level,

remove the variable with the least impact to the model and one

that does not meet the significance level.

c. Check Variable Quantity

i. If all variables are significant and there are less than 12 variables,

move to section III.

ii. If there are more than 12 variables or some of the variables are not

significant, go to section II.

III. Determine the Optimum Order to Optimize Threshold Variables

25

IV. Using the 12 or less Variables, Minimize the MAPE

V. Using Forecasts from Section IV, Generate Control Chart Bounds

VI. Validate

a. Forecasts from section IV

b. Predictions from Control Chart, section V

Variable Selection

 We use a standard OLS model previously listed in the literature review section (Equation

2.2) to determine our variables and their thresholds. Before we begin our backward stepwise

regression, we reduce the possible variables to 30 in order to make the data manageable. To

reduce the variables we use a mixed stepwise regression, explained in the Literature Review

Chapter, with an exclusion criterion p-value of 0.1 for the variables. After we prepare our

variables for analysis, we obtain our parameter estimates, by minimizing the sum of squared

error (SSE). We use both static and dynamic variables in our model. SPI presents a good

example of a static variable since it does not change because the components that makeup the

equation do not change, while dynamic variables in our model change based upon a given input.

For example, one of our variables, Large CPI, presents a value of one if the CPI presents a value

larger than some threshold and a zero otherwise, (reference Equation 3.2).

𝐶𝑃𝐼 𝐿𝑎𝑟𝑔𝑒 = �1 𝑖𝑓 𝐶𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 3.2

Appendix E lists which of our variables use thresholds and which do not.

 To determine thresholds in our analysis, we use the Cutting the Plane method and a

variation of the Simplex Method, both previously described in the Literature Review Chapter.

We use these two methods, in conjunction with one another to determine significance thresholds,

26

to optimize the function itself. We then remove variables to meet our conditions concerning

variable significance and quantity. For our analysis, we ensure that the overall p-value displays a

value less than 0.005, where the null hypothesis states that no difference exists between zero and

the population parameter. We use a lower than generally acceptable, 0.05, value to ensure our

variables significance, even if we fail to meet all the OLS assumptions. We limit the number of

variables we use in our model to 12, including the intercept, or less to keep our model simple.

We address this later in the section in the variable removal portion.

 Once the model meets the significance and variable quantity conditions, we optimize the

parameter estimates by minimizing the mean absolute percent error (MAPE). Optimizing with

MAPE instead of SSE ensures even weighting of each individual month of data. Due to

computational difficulties, we do not use the MAPE to determine variable thresholds and

selection. To minimize MAPE, a non-linear function, we use Excel’s SOLVER, which

converges on the solution through maximum likelihood estimators (Rachev, 2007). Using the

maximum likelihood estimators requires significantly greater processing power than minimizing

the SSE, minimized through a linear process, which forces us to use the SSE as our loss function

for determining variables and their thresholds.

Cutting the Plane

 We use the Cutting the Plane method, previously described in the Literature Review

Chapter, to determine the approximate location of the global minimum of the variable’s function

in which we optimize. For example, using “Large CPI,” defined by Equation 3.2, we determine

the approximate “threshold” that minimizes the SSE. To determine this threshold, we first apply

a range of possible solutions for the function to ensure we do not overweight a few months of

data. For example, the threshold for the CPI function takes on any number between one and

27

1.15. We then divide the range into 20 equal cuts and determine the SSE for each value. For

instance, using the “Large CPI” range, we test 1, 1.0075, 1.015, 1.025…1.15 and determine the

SSE for each threshold. Figure 3.1 displays a visual representation of the Cutting the Plane

algorithm. We consider the value that displays the lowest SSE the approximate location to the

global minimum for that variable and the starting point for the modified Simplex Method.

Simplex Method

 After the algorithm determines the approximate global minimums, we use a variation of

the Simplex Method to determine the local minimum. As we previously stated in the Literature

Review Chapter, we assume the local minimum equals the global minimum because the starting

point for the Simplex Method resides near the global minimum. In our version of the Simplex

Method, we use the percent change in SSE to determine whether the algorithm continues or stops

at the given solution.

Figure 3.1: Cutting the Plane Example

Figures 3.2, 3.3, and 3.4 outline our process to determine the local minimum.

28

Figure 3.2: Modified Simplex Method Initial Procedure

29

Figure 3.3: Modified Simplex Method Test SSE<Previous SSE

30

Figure 3.4: Modified Simplex Method Test SSE>Previous SSE

31

 The starting SSE equals the lowest SSE from the Cutting the Plane algorithm. To

determine the magnitude from the starting point, we divide the range, as described in the Cutting

the Plane section, by 40. This represents half the distance between the cuts from the Cutting the

Plane method. For example, on the “CPI Large” variable our range portrays a value of 0.15;

therefore, 0.00375 represents half the value of the distance between the cuts. We determine if

we increase or decrease the starting point by comparing the SSE of a positive change and

negative change from the starting point. For example, if the lowest SSE, from the Cutting the

Plane method, displays a value of 1.04, then 1.04375 and 1.03625 correspond to the two test

points to determine the initial move direction. The algorithm will continue to change the

previous point by the change, same magnitude and direction, until the previous point’s SSE

generates a lower SSE than the current point’s SSE. For example, if 1.04375 displays a lower

SSE than 1.03625 and the starting point (1.04), then the algorithm would then test 1.0479

(1.4375 + 0.00375). This process will continue until the SSE increases. When this happens, the

change decreases in magnitude by half and changes in direction from positive to negative or

negative to positive. For example, if 1.0479 portrays a SSE larger than 1.04375, then the

algorithm will test 1.046025 (1.0479- 0.00375
2

). This process of changing magnitude and

direction continues until the percent change in SSE exhibits a value less than the exit criterion.

 For our algorithm, we use an exit criterion of 1 ∗ 10−6. After the algorithm meets the

exit criterion, it compares the starting SSE to the final test SSE. If the final test SSE portrays a

value less than the starting SSE, then the final test point becomes the optimum threshold for the

function the algorithm optimizes. However, if the starting SSE depicts a value less than the final

test SSE, then the starting point becomes the optimum threshold for the function.

32

Variable Removal

 After the algorithm runs the Cutting the Plane and the modified Simplex Method for all

function variables, the algorithm then determines if current model meets specifications. The

algorithm checks to ensure that all the variables meet the requirements for both the p-value of

each variable and the total number of variables. If the current model fails to meet the two

requirements, the algorithm removes one variable. The algorithm uses two different methods to

remove variables, one coupled with variables not meeting the p-value threshold and the other

with having more than 12 total variables, all of which meet the p-value threshold.

 To determine which variables the algorithm considers for removal, we use the Bonferroni

Method to determine the p-value threshold for each individual variable. To determine the

threshold, we divide 0.005 by the total number of variables currently in the algorithm (Neter et

al., 1996). When one or more variables portray a failing p-value, greater than 0.005 divided by

the total number of variables, the algorithm only considers removing those variables with failing

p-values. The algorithm removes the variable with the least impact to the model. The algorithm

uses the standardized Beta coefficient, previously described in the Literature Review Chapter, to

determine the variables impact on the model. The algorithm sorts variables, only those with

failing p-values, by the absolute standardized coefficient. The algorithm then selects the smallest

standardized coefficient, of the variables with failing p-values, and removes the variable.

 If all the variables show passing p-values, but the model contains more variables than 12

variables, then the algorithm must remove a variable. The algorithm will then sort all of the

variables by their respective absolute standardized coefficient. After the sorting, the algorithm

selects the smallest absolute standardized coefficient and removes the variable associated with it.

 After the algorithm removes a variable, the algorithm re-runs the Cutting the Plane

33

algorithm and then the Simplex Method to re-optimize the thresholds for the variables, since

removing variables could change the optimum thresholds. The algorithm will stop removing

variables and optimizing when the model contains 12 or less variables, including the intercept,

where each variable portrays a passing p-value, excluding the intercept. Once the algorithm

meets the requirements, the algorithm determines the optimum order to run the Cutting the Plane

algorithm and the Simplex Method. To determine the order, the algorithm runs through all

permutations of the order of the variables the algorithm optimizes to determine the lowest

possible SSE.

 Determine Optimum Optimization Order

 Once the algorithm selects the best combination of variables, it must determine the order

to optimize the thresholds associated with those variables. The algorithm does not change the

optimization order until after it selects the variables because of computational limitations. For

example, in our analysis we use 24 (some variables contain more than one threshold) different

thresholds for different variables. To determine the optimum order for those 24 variables, the

algorithm runs the optimization procedures 6.2 × 1023 times. However, when six thresholds

exists the algorithm. It only needs to run the procedures 720 times. To determine the optimum

order, the algorithm runs the Cutting the Plane and Simplex Method multiple times where a new

variable is optimized first each time. To determine the variable that the algorithm optimizes

first, it compares the SSE at the end of each run. The algorithm then locks the variable

displaying the lowest SSE in the first position. After determining the first position, the algorithm

uses the same procedure to determine the remaining positions. Once the algorithm sets the order,

it determines the variables’ thresholds and determines the final parameter estimates for each

variable.

34

Minimizing the MAPE

 Finally, after the algorithm determines the thresholds and the significant variables, we

generate the optimum coefficients by minimizing the MAPE. Using the MAPE as the loss

function instead of the SSE ensures we do not over-weight a few data points compared to

minimizing the SSE. Squaring the error term, when minimizing the SSE, is the cause for the

over-weighting; however, when minimizing the MAPE the model does not square the error term,

which leads to weighting all error equally. Minimizing the MAPE, after using the SSE for

variable selection, could affect the variables significance. To ensure the accuracy of the data set

used for analysis, we compare the accuracy of the model to the validation data set; we address

this in further detail later in this chapter. After establishing our optimum coefficients, we use the

model outputs to produce probabilities of problem occurrence.

Generating Control Chart Bounds

 We run the algorithm to predict the EAC ratio for four, five, and six months into the

future. We use these outputs to generate control charts. If a prediction from the model falls

outside the bounds of the control chart, we consider this an indicator that a problem will occur

within a given time period. We generate a control chart with two bounds, an upper bound and a

lower bound. If a problem occurs within six months of detection, we identify that individual

problem; however, if no detections occur within six months of a problem, we do not detect that

problem.

 To determine the bounds of the control chart, we optimize the percent of total problems

the control chart detects while ensuring less than 30 percent of our predictions fall outside the

control chart bounds. For example, if 50 potential problems exist in our four-month predictions,

and we detect 30 of the 50 problems within six months of occurrence, while detecting less than

35

30 percent of the time, our optimization function displays a value of 0.6. We maximize this

function by changing the upper and lower bounds of the control charts. The model that produces

the highest optimization function and performs well with the validation data set we establish as

our model for problem detection.

 To optimize the percent of problems we detect, we change the control chart bounds. We

use a complete grid search of every possible combination of control chart bounds to establish the

optimum bounds. We compare the optimization function, as previously defined, of each

different set of control chart bounds and select the bounds that produce the greatest value of the

function. To perform the grid search, we use Crystal Ball® and set the upper and lower control

chart bounds to uniform random variables. We set the upper control chart bound to a random

number between zero and fifteen percent EAC growth from current month to the predicted

month, we set the lower control chart bound to a random number between zero, and 10 percent

EAC decrease. For example, on one trial, the bounds could display values of five percent growth

and four percent decrease. With those bounds, any prediction where the EAC prediction

increases greater than five percent or the EAC prediction decreases greater than four percent we

deem it a detection. In that same scenario, any prediction of less than five percent EAC growth

and four percent EAC decrease, we deem a non-detection. After each trial, we report the

optimization function and after we run more than one million trials, we obtain the complete grid

of possible combinations of control chart bounds. We do this procedure for our four through six-

month model predictions and compare the aforementioned optimization function between the

different control charts. We select the model prediction that detects the greatest percent of

problems and use those predictions to determine probability of a problem occurrence.

 After determining which model predictions we use, we make six different control charts,

36

with the bounds established from the optimization, to determine the probability a problem exists

one through six months into the future. For example, if 10 predictions occur outside the control

chart bounds and eight problems transpire within five months of those predictions, then the

model states an 80 percent chance of a problem occurring within five months of a prediction

falling outside the control chart bounds. We use these same procedures to establish probabilities

of a problem occurrence one to six-months from a detection.

Validation

 We use our validation set to test two things. First, we determine whether the point

estimates provided by our three models prove statistically significant. Second, we test to ensure

our bounds for the control chart demonstrate statistical significance. To ensure the point

estimate’s validity, we use a difference of means t-test, not assuming equal variances or

population size, and determine the confidence level for the MAPE. We perform a one-tailed t-

test where the null hypothesis states that the analysis data set’s MAPE is greater than the MAPE

of the validation’s data set. We perform a one-tailed test because we only care if the MAPE

increases for the validation set. If the p-value, for the difference of means test, demonstrates a

value less than 0.1, we consider it a significant statistical difference between the means.

Therefore, to pronounce no statistical difference between our validation set and the data we use

to create our models, the p-values must be greater than 0.1. For the control chart, we perform a

one-tailed difference of proportions z-test for the percent of time our control chart produces a

correct detection or non-detection for the six-month estimate. We define a correct prediction as a

non-detection when no problem occurs within six-months or a detection when a problem occurs

within six-months. We test the null hypothesis that the proportion of correct predictions to total

predictions for the analysis data set is less than the proportion of correct predictions to total

37

predictions for the validation data set. We use the same p-value thresholds for the difference of

proportion test as we do for the difference of means test. After we ensure our data’s validity, we

compare our results to the current community’s standard.

 To determine the usefulness of our results to the acquisitions community, we compare

our findings to a typical detection method. We use Keaton’s (2011) detection algorithm and

compare detection rates and accuracy rates. We feel Keaton’s detection algorithm is

representative of the typical tools an EVM expert uses in the field. If our results improve upon

his and they pass the validation tests, we deem our findings both valid and useful. In the next

chapter, Results Chapter, we assess our results from our EAC predictions, control charts, and the

validation tests.

38

IV: Results

 This chapter provides the results of the three forecasting models as well as our control

chart for problem detection. We present the three formulas we use to make our EAC predictions

for four, five and six months into the future. We address the accuracy and the shortfalls of our

forecasts as well as our problem detection using the control chart.

 The data is comprised of 67 months with absolute changes in the EAC from one month to

the next greater than five percent. Nine of the changes, or problems, occur in our validation data.

For the four-month control chart, seven of the 58 problems fall outside our eligible prediction

window, nine and 11 for the five and six month control charts. We lose possible problems to

detect because we do not use the first two months of data; additionally, we lose one month of

data, within each program, for every extra month we predict. For example, our five-month

prediction model contains 29 less months of data than our four-month prediction model since we

use 29 programs in our analysis data set. Our four-month control chart detects 70 percent of the

problems, the five-month control chart detects 73 percent of the problems, and the six-month

control chart detects 74 percent of the problems. We address later in the chapter why we

recommend using the four-month predictions for the control chart in lieu of not producing the

optimal percent of problems detected.

Model Predictions

 To reduce the complexity of our models, we limit the number of variables we use to

predict the EAC. In our five and six-month models, the algorithm selected 11 variables, while

the algorithm selected 10 variables for the four-month model. Reference Tables 4.1, 4.2, and 4.3

for a list of our equations and the results of the models we use to predict the EACs. Refer to

39

Appendix E for a description of the variables.

 Our models predict the ratio of either the four, fifth, or sixth month divided by the current

month EAC. To determine the point estimate of the fourth, fifth or sixth month EAC the analyst

multiplies the ratio by the current month’s EAC. For example, if the five-month model outputs a

ratio of 1.0421 and the contractor reports an EAC of 143,000, then the model predicts a point

estimate of 149,020.3. These estimates prove significant because of the results of statistical tests,

shown in Tables 4.2, 4.3, 4.4.

 Our three models we use to forecast the future EAC all pass validation. Table 4.1

displays the p-values associated with the difference of means test we perform, which we describe

in the Methodology Chapter. All of the MAPE values for the validation set prove more accurate

than the data we use to determine our variables. Refer to Table 4.1 for the results of the

difference of means tests as well as the respective MAPE’s for our models.

Table 4.1: Results of Prediction Models

 4-Month 5-Month 6-Month
P-Value 0.787 0.201 0.888
MAPEanalysis 3.135 3.675 4.080
MAPEvalidation 2.695 3.551 3.442
Sample Sizeanalysis 861 832 803
Sample Sizevalidation 212 208 204

 None of the model’s error terms portray a normal distribution or constant variance;

however, failing these two assumptions does not affect our models’ predictions or their use in the

control charts because we only use the point estimates generated from the models. Figure 4.1

displays histograms of each of our three models’ studentized error distributions. We believe the

few extreme, more than four standard deviations, prediction errors cause the deviation from

normality. The drastic deviations from normality happen when the EAC changes by very large

levels, greater than 30 percent. When the EAC changes by greater than 30 percent, our models

40

Table 4.2: Equation for Four-Month Prediction Results

Variable

Parameter
Estimate
(MAPE)

Percent
Impact
(OLS
Standard
Beta)

p-value
(OLS)

Intercept 2.312 1.4E-22
CPI -1.275 14.125% 1.2E-14
SPI -1.159 10.084% 1.4E-13
SCI 1.123 17.368% 4.5E-14
Percent Difference
Between ML and B 0.017 1.072% 2.5E-09
EAC Prediction CPI w/ no
EAC Change 0.009 19.756% 2.0E-11
EAC Prediction
Composite w/ no EAC
Change -0.010 18.745% 1.4E-10
EAC Prediction CPI w/
EAC Change 0.049 8.420% 8.5E-05
EAC Prediction
Composite w/ EAC
Change -0.042 7.606% 1.8E-04
CPI Large w/ EAC
Change -0.043 1.170% 8.8E-07

Large Percent Difference
Between B and W w/
EAC Change 0.141 1.654% 7.8E-17

41

Table 4.3: Equation for Five-Month Prediction Results

Variable

Parameter
Estimate
(MAPE)

Percent
Impact
(OLS
Standard
Beta)

p-value
(OLS)

Intercept 2.7877 1.8E-46
CPI -1.6890 22.030% 9.2E-40
SPI -1.6161 15.931% 3.6E-33
SCI 1.5266 27.838% 2.0E-36
Percent Difference
Between ML and B 0.1397 1.659% 1.3E-22
EAC Prediction
CPI w/ no EAC
Change 0.1140 14.294% 1.2E-07

EAC Prediction
Composite w/ no
EAC Change -0.1241 14.104% 1.7E-07
CPI Large w/ EAC
Change -0.0106 1.001% 7.7E-09
CPI Small w/ EAC
Change 0.0233 0.606% 1.3E-04
TSPI Large w/
EAC Change -0.0382 0.873% 1.8E-10

Large Percent
Difference
Between B and W
w/ EAC Change 0.1136 0.942% 3.8E-08

Small percent
Difference
Between ML and B
w/ EAC Change 0.0053 0.723% 2.9E-09

42

Table 4.4: Equation for Six-Month Prediction Results

Variable

Parameter
Estimate
(MAPE)

Percent
Impact
(OLS
Standard
Beta)

p-value
(OLS)

Intercept 2.150 1.3E-20
CPI -1.203 12.809% 2.4E-16
SPI -0.996 9.580% 7.3E-15
SCI 1.043 17.176% 2.1E-17
Percent Difference
Between ML and B -0.006 1.320% 4.0E-16
EAC Prediction CPI w/ no
EAC Change 0.038 14.183% 1.6E-07
EAC Prediction Composite
w/ no EAC Change -0.025 12.449% 4.7E-06
EAC Prediction CPI w/
EAC Change 0.154 15.163% 3.9E-12
EAC Prediction Composite
w/ EAC Change -0.133 13.824% 1.7E-11
CPI Small w/ EAC Change 0.017 0.713% 5.7E-06
SCI Large w/ EAC Change -0.067 1.674% 2.0E-16

Large percent Difference
Between B and W w/ EAC
Change 0.150 1.109% 8.4E-11

43

do not predict the magnitude of the change accurately. However, our models typically predict a

change great enough to indicate a problem; we address problem indication later in the chapter.

Therefore, even though the model diverges in accuracy, it still provides the correct information

to decision makers.

Figure 4.1: Histograms of Model Error

 Since we only use the point estimates of our model and do not use a confidence interval,

it proves unnecessary for the error term to contain constant variance. We made our overall p-

value for excluding variables 0.005 to ensure the significance of the variables we select before

minimizing for the MAPE. All of the Cooks Distances for each of the models present values

lower than 0.5; therefore, we conclude that none of our monthly observations overly influences

44

the coefficients in our models. Reference Appendix G for our Cooks Distance charts.

 Due to the strong performance with the validation set, we feel confident that these few

problems with the model assumptions do not affect our models use. All three of the models’

predictions present lower MAPE scores on the validation data than the data we use to generate

our Parameter estimates; Tables 4.1, 4.2, and 4.3 display the results of our models. The three

models also passed validation, the p-value for the t-test displayed a value greater than 0.1. These

p-values reinforce our confidence in our models’ predictions and the use of those predictions in

our control charts. We present a breakout of the absolute percent error (APE) of each model in

Figure 4.2.

Figure 4.2: Histograms of Model APE’s

45

Control Chart

 Our control charts provide decision makers with the likelihood of a problem occurring

within a given time period. We use the z-test to test the percentage of time the control chart

produces a correct prediction to validate our control chart bounds. Table 4.5 presents the results

of each of the control charts and their performance in the difference of proportions z-test. Our

validation data contains a limited number of problems to detect, but this does not affect our

validation of our control charts. Since we use the percent of time the control chart provides

correct predictions to validate our data, the percent of total problems the control charts detect

does not change our validation of the models. The limited number of possible problems to detect

in our validation data limits our analysis on this statistic for the validation data; therefore, we do

not compare the percentage of problems the control chart detects in the validation set to the data

set we use for our analysis.

 We use our four-month control chart to provide the likelihood of a problem occurrence.

Our four-month control chart does not detect as many, six percent less, of the overall problems as

the six-month control chart; however, it does detect more of the problems in the validation data.

The five-month control chart detects two of the problems and the six-month control chart only

detects one problem. The four-month control chart has the opportunity to detect five problems

while the five and six-month control charts only have the opportunity to detect four problems.

The loss in data due to the forecasting period causes the decrease in the detection opportunity.

The four-month control chart presents more correct predictions than both the five and six-month

control charts in both the analysis data and the validation data. Since the four-month control

chart performs better with the validation data set and only a small difference exists in the data we

use in our analysis, we use the four-month control chart to determine likelihoods.

46

Table 4.5: Control Chart Results

4-Month
Prediction

5-Month
Prediction

6-Month
Prediction

Upper Control Chart
Bound 1.0146 1.0212 1.0211
Lower Control Chart
Bound 0.9787 0.9810 0.9772
% of Time Detection
Occurs (analysis) 28.80% 29.44% 29.27%
% of Time Detection
Occurs (validation) 21.00% 32.55% 15.57%
% of Time Correct
(analysis) 71.15% 69.35% 69.61%
% of Time Correct
(validation) 74.50% 67.90% 73.58%
% of Total Problems
Detected (analysis) 70.00% 73.50% 75%
% of Total Problems
Detected (validation) 40.00% 50.00% 25.00%
p-value for Z-test
(proportion of
analysis<proportion of
validation 0.834 0.343 0.866
Sample Sizeanalysis 861 832 803
Sample Sizevalidation 212 208 204

 Using the four-month control chart, we determine the percentage of total problems the

control charts detect within different time periods. In addition, we determine the probability of a

problem occurrence given a detection and the probability that a problem will not occur given that

we do not detect a problem. Table 4.6 displays these likelihoods. We graph all of our correct

and incorrect predictions, of a four-month control chart, using a scatter plot with our control

chart bounds to provide a visual representation of our data. See Figure 4.3 for the control chart.

Figure 4.4 depicts a zoomed in control chart portraying data points 450-549. In both control

charts, grey depicts an incorrect prediction and black depicts a correct prediction. A black dot

47

falling outside the bounds means we detect a problem and a problem occurs within six months,

while a black dot within the bounds means we do not detect a problem and no problem occurs

within six months. A grey dot outside the bounds means we detect a problem and no problem

occurs within six months, while a grey dot within the bounds means we do not detect a problem

and a problem does occur within six months.

Table 4.6: Breakout of Probabilities

Within 1
Month of
Occurrence

Within 2
Months of
Occurrence

Within 3
Months of
Occurrence

Within 4
Months of
Occurrence

Within 5
Months of
Occurrence

Within 6
Months of
Occurrence

Percent of Total Problems
Detected 48.00% 52.00% 58.00% 64.00% 64.00% 70.00%
Probability of a Problem
Given a Detection 11.06% 19.82% 29.03% 34.56% 40.09% 42.34%

Probability of No Problem
Given No Detection 96.59% 93.01% 90.08% 86.83% 84.55% 83.73%

 In our data set, when the four-month model predicts extremely high, greater than 1.14, or

extremely low, less than 0.935, a problem always occurs within six-months of that point. In our

model, we do not see a relationship between successive detections and the likelihood of problem

occurrence. Table 4.7 displays the results of our control chart compared to one method the DoD

acquisition’s community currently uses, Keaton’s (2011) one standard deviation CPI detection

algorithm. The boxes in the table portray the conditional probabilities given a detection or non-

detection. For example, the top left box exhibits the probability of a problem in six months

given a detection, while the lower left box in the table depicts the probability of no problem

occurring within six months of a detection. The right column displays the same values except

given a non-detection instead of a detection as the state of nature. The top right box represents

the false negatives and the bottom left represents the false positives. Our method improves on

48

Keaton’s (2011) method in both false positives and false negatives. In the next chapter, we

discuss the implications of our findings as well as future areas to improve upon our research.

Figure 4.3: 6-Month Control Chart Using Four-Month Predictions

0.979

1.015

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 200 400 600 800 1000

4-
M

on
th

 P
re

di
ct

io
n

Ra
tio

Data Point Number

6 Month Control Chart

Correct Prediction

Incorrect Prediction

49

Figure 4.4: Control Chart Using Four-Month Predictions Zoomed

Table 4.7: Comparison of Our Results to Community Standard

Our Method

Community Standard (Keaton's 1
Stdev CPI Method)

 Detection No Detection

 Detection No Detection
Problem 42.34% 16.27%

Problem 22.69% 28.00%

No Problem 57.66% 83.73%

No Problem 77.31% 72.00%

0.979

1.015

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

0 20 40 60 80 100 120

Fo
ur

-M
on

th
 P

re
di

ct
io

n

Data Point Number

6 Month Control Chart (Zoomed)

Correct Prediction

Incorrect Prediction

50

V: Conclusions

Discussion of Results

 We set out to answer a few initial research questions:

1. Can we provide an accurate point estimate for future contractor provided EAC’s?

2. Can we detect future major changes to the EAC?

3. If we detect major changes to the EAC, can we provide decision makers with a timeframe

and probability of those major changes to the EAC?

 We answer the first question by providing three models that predict the contractor

provided most likely EAC four, five, and six months into the future. We develop these

predictions through an optimization algorithm. We find our optimization algorithm provides

three sufficient models to provide decision makers with a point estimate of the EAC six months

from the current period within an average of four percent. These predictions feed into our

control charts to answer the last two research questions.

 Our control charts detect 70 percent of the total problems while only identifying 28

percent of the months as potential problems. We detect more overall problems than the previous

researcher’s models (Keaton et al., 2011), while producing less false positive detections. Our

control charts provide accurate predictions of either a future problem, or no future problem, over

seventy percent of the time. These results provide decision makers with essential information as

to when a problem might occur as well as its probability.

 As with previous research, determining what represents a program problem actually

presents itself as a problem. To overcome this issue, we use the same definition of a problem as

the previous research. This ensures continuity between our research and allows us to baseline

our results against the previous examination.

51

 Our algorithm outperforms prior researcher’s model (Keaton et al., 2011) by nearly a

factor of two in reference to the accuracy of a control chart detection. For example, if a decision

maker controls 20 programs and uses our method to determine if a problem will occur in their

program, our algorithm will detect five programs while the Keaton model will detect eight

programs. Two problems will exist within our algorithm’s five detections. In contrast, the same

two problems will exist within Keaton’s model, but his model requires excessive detections (in

this example, eight). This added accuracy allows our algorithm to enhance the oversight to

acquisition programs. The higher level of accuracy enables DoD leadership to better allocate

their resources and prevent future acquisition problems. The early detection should prevent

programs from remaining unstable past the 20 percent completion. We believe if program

managers implement our detection algorithm procedures at the start of their program, the

likelihood of their program going over budget will decrease .

 Our research does contain a few areas of concern; however, we feel these concerns do not

limit the validity and reliability of our findings. Our validation data set limits our problem

detection since only five potential problems exists for our control chart to detect. However, we

overcome this issue by comparing the overall accuracy of the control charts. To compare the

overall accuracy, we compare the percent of correct predictions between our different data set.

In our validation data set, we detect just over 20 percent of the time, while with the data we use

for analysis we detect close to 28 percent of the time. These differences ensure the accuracy and

validity of our control charts because more potential problems exist within the data set we use for

analysis; therefore, it should detect more frequently. Additionally, the closeness between the

accuracy of our analysis data and our validation data predictions reaffirms our confidence in our

results.

52

 Our high level of accuracy for our point estimates proves a testament as to the quality of

our data-mining algorithm that we previously described in the Methodology Chapter. Our

algorithm institutes a highly effective procedure for determining relationships and generating

variables within a data set. Since our algorithm does not need to use a specific type of data,

researchers and analysts can use it to generate models for any type of data. The procedures we

establish in the Methodology Chapter serve as a way for analysts to provide leadership with the

information they require to make informed decisions.

Implications of Findings

 Providing decision makers with the probability and timing of a future problem

occurrence, enables them to focus on the DoD contracts that show early signs of poor

performance. This early detection will hopefully prevent future problems and save the DoD

millions of dollars in cost overruns. These potential problems also affect the contract schedule,

and the early detection enables DoD leaders the opportunity to provide more oversight and

reduce the amount of future schedule slips. The point estimates we provide allows DoD

leadership to compare between contracts to determine which one(s) needs the most attention.

 These estimates enable leadership to track and forecast the course of the program. The

point estimates also serve as a way to distinguish between multiple detections. For example, if a

decision maker controls 20 programs and our algorithm detects five programs where a potential

problem will exists, the point estimate serves as a comparison of which program needs the most

attention. If three of the five predictions predict a three percent increase in the EAC in four

months and two predict an increase of five percent, a decision maker can address the two with

the greater prediction first. In addition, the point estimates serve as a way of checking the

algorithm’s accuracy within their program. Since we combine multiple acquisition programs

53

together within our analysis, some programs demonstrate more accurate results than others. A

decision maker can take that information to determine if they want to use our algorithm within

their programs, which will increase their management efficiency.

 Early problem detection increases efficiencies in DoD programs. The detection of

problems provides the capability to better utilize personnel. With an algorithm to determine

when potential problems occur, acquisition personnel will not spend their time consumed with

tracking program data. The acquisition personnel will spend their extra time performing their

primary duties. In a time of DoD downsizing, a process that automates redundant work increases

the overall capability of the acquisitions community.

Follow on Research

 Using our method to determine when a possible problem will occur, permits decision

makers to focus on the programs that require the most attention. Our research does not provide a

decision maker the area within the contract that causes the potential problem. Future research

can use lower level CPR’s to determine the cause of the potential problem. Determining this

cause will enable program managers to spotlight the area that needs the most attention.

 In addition, follow on researchers can apply our methods to non DoD contracts. Contract

management for commercial construction companies or the Department of Energy requires close

project management as well. In this study, the research could focus on changes to the sensitivity

of the detection and possibly a control chart with non-stationary bounds. A control chart with

non-stationary bounds would decrease the false positives of our research while maintaining the

overall effectiveness of our detections. A non-stationary control chart could use text-mining

input to determine the level of deviation in the EVM data required to indicate a potential

problem.

54

Appendix A: Example Format-1 (AEHF Program)

COST PERFORMANCE REPORT Page 1 ol 3
FORMAT 1 · WORK BREAKDOWN STRUCTURE DOLLARS IN : Thousands

1. CONTRA CTOR 2. CONTRACT 3. PROGRAM 4 . REPORT PERIOD

a. NAME a. NAME a. NAME a . FROM (CCYYMMDD)
LOCKHEED MARTIN S PACE SYSTEMS AEHF AEHF SDD 20071001

b . LOCATION (Address and ZIP code) b . NUMB ER

111 1 LOCKHEED MARTIN W AY F0470 1·02·C·0002 p. TO (CCYYMMDD)

c. TYPE
d. SHARE b. PHASE (X one) 20071028

RATIO
S UNNYVALE , CA USA 94088 I C PAF 100/0 0/100 lxl RDT&E n PRODUCTION

5. CONTRA CT DATA

a. QUANTITY b. NEGOTIA TED c. EST COST A UTH d . TARGET e. TARGET P RICE I. ESTIMATED g . CONTRACT h . ESTIMATED
PROFIT/ CONTRA CT

PROD: 0 COST UNPRICED WORK FEE PRICE CEILING C EILING

R&D: 3 $3,883,652 .6 5 17,714.5 5458,544 .2 / 0.0% 54,342,196 .7 $4,838,032.0

6. E STIMATED COST AT COM PLETION 7. AUTHORIZED CONTRACTOR REPRESENTATIVE
MANAGEMENT ESTIMATE CONTRACT BUDGET VARIANCE a. NAME (Last, First, Middle Initial) b. TITLE

AT COMPLETION (1) BASE (2) (3) TRAN, J . CONTRACTS

a. B EST CASE $4,364 ,262.0 c. SIGNATURE d . DA TE (CCYYMMDD)
b . W ORST CASE $4,480,862.0 20071203

c. MOST LIK ELY $4,377,362.1 $3 ,90 1,367 .1 S-475,995.0

8. PERFORMA NCE DATA

CURRENT PERIOD CUM ULATIVE TO DA TE REPROGRAM A T COM PLETION

ITEM BUDGETED COST ACTUAL VARIANCE BUDGETED COST ACTUAL VARIANCE ADJUSTM ENTS
WOR>< WOR>< COST WORK WORK WORK OOST WORK COST

SCHEDULED PERfORMED PERFORMED SCHEDULE COST Sa-IEDULED PERFORMED PERfORMED SCHEDULE COOT VARIANCE BUDGET BUDGETED ESTIMATED VAIUANCE

11) (21 131 14) JS) 1<1 (7) 1'1 !'I 1 1~ (11) 112) 113) 11~ 115) 11<)

a. WB S EL EMENT

TOTAL COST - AEHF SYSTEM DESIGN AND DEVElOPMENT 2 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 3,882,108 4,345,003 -462,895

SV 1&2 - SPACE VEHICLE 1&2 3 28,184 29,301 40,158 1,116 -10,857 2,853,424 2,838,185 3,202,538 -15,240 -384,354 3,337,430 3,803,096 -465,667

1.0 - SPACE VEHICLE 4 12,551 13,148 23,298 597 -10,150 1,948,792 1,939,698 2,323,748 -9,094 -384,050 2,106,373 2,584,411 -478,038

1.1 - SPACECRAFT BUS 5 2,212 2,221 4,826 9 -2,605 271,192 266,255 344,754 -4,937 -78,499 292,007 384,538 -92,532

1.1.1 - STRUCTURES/PROP/THERMAL HOWE 6 134 295 869 161 -574 46,711 45,932 70,066 -779 -24,133 48,453 75,377 -26,924

1.1.2 · GUIDANCE NAVIGATION & CONTROL 6 56 56 49 0 7 16,282 16,145 18,835 -137 -2,689 16,392 19,568 ·3,176

1.1.3 - SOLAR ARRAYS & MECHANISMS 6 183 313 1,384 130 -1,051 37,956 38,295 50,236 -1,661 -13,941 39,038 56,917 -17,878

1.1.4 - HIGH POWER ELECTRONICS 6 939 522 861 -416 -339 32,116 30,971 35,202 -1,144 -4,231 33,522 39,028 -5,505

1.1.5 - TELEMETRY TRACK & CONTROL HOWE 6 0 0 2 0 -2 12,994 12,994 14,087 0 -1,093 12,994 14,097 -1,103

1.1.6 - COMMAND/DATA HANDLING HOWE 6 0 76 232 76 -156 40,800 40,597 51,376 -203 -10,779 40,800 51,856 -11,056

1.1.7 - SPACECRAFT BUS FLIGHT SOFTWARE 6 553 527 619 -26 -92 38,859 38,150 45,138 -709 -6,988 46,104 55,492 -9,388

1.1.8 - SPACECRAFT BUS SErPM 6 316 317 709 1 -382 29,301 29,298 42,132 -3 -12,834 37,968 53,541 -15,573

1.1.9 - SPACECRAFT BUS I&T 6 30 114 120 84 .., 16,173 15,872 17,683 -301 -1,811 16,735 18,662 -1,927

1.2 - EHF PAYLOAD 5 8,846 9,613 13,881 767 -4,268 1,606,935 1,605,127 1,881,821 -1,808 -276,694 1,711,172 2,043,550 -332,378

1.2.7 - PAYLOAD 1-17-19-21-23-25-27-45 6 8,846 9,613 13,881 767 -4,268 1,606,935 1,605,127 1,881,821 -1,808 -276,694 1,711,172 2,043,550 -332,378

1.3 - LAUNCH SUPPORT OPERATIONS 5 245 77 27 -169 so 2,160 1,914 1,190 -246 724 11,181 10,750 431

1.4 - SPACE VEH AGE/MAGE 5 28 61 1,147 34 -1,086 8,690 8,573 15,661 -117 -7,088 9,152 20,048 -10,896

55

COST PERFORMANCE REPORT
Page 2 ol3

FORMAT 1- WORK BREA KDOWN STRUCTURE DO LLARS IN : Thousands

8. P ERF ORMANC E DAT A

CURRENT PE RIOD C UM ULATIV E TO DATE REPROGRAM AT COM PLETIO N

ITEM BUDGETED COST ACTUAL VARI.4HCE BUJGETEO CO$T ACTUAL VARIANCE ADJ U STMENTS

WORK WORK COST WORK WORK WORK COST WORK COST

SCt£0ULED PERfORMED PERfORMED SCHEDULE COST SCHEDULED PEIV"ORMEO PEIV"ORMEO SCHEDULE COST VARIANCE BUDGET BUDGETED ESTIMATED VARIANCE

(11 (2) (31 ('I (5I (G) (1) (81 1'1 (10) 111) (12) (13) 114) ~·I (1G)

a. W BS EL EMENT

1.5 - SPACE VEH SEIPM 5 422 410 919 -12 -509 45,604 45,576 53,491 -28 -7,915 52,877 69,022 -16,145

1.6 - SPACE VEH I&T 5 798 766 2,498 -31 -1,731 14,212 12,253 26,832 -1,959 -14 ,579 29,984 56,503 -26,518

2.0 - MISSION CONTROl SYSTEM 4 8,263 9,035 9,100 772 -65 550,983 549,606 549,347 -1,377 259 682,371 679,262 3,109

2.1 - MOPS 2-6-7-8-9-11-13-14-28-33-34-44 5 8,094 8,867 8,857 773 10 534,447 533,099 533,891 -1,348 -792 684,058 661,827 2,231

2.6 - MCS INTEGRATION & TEST - 10 5 0 0 0 0 0 294 294 301 0 -6 294 301 -6

2.7 - MCS SEIPM 3-4-5-12-15 5 169 168 243 0 -75 16,241 16,213 15,156 -29 1,057 18,019 17,134 884

3.0 - INTERSEGMENT SYS ENG/PGM MGMT 4 4,105 4,143 4,215 38 -73 239,578 237,168 227,633 -2,410 '9,535 336,840 333,344 3,296

3.1 - SYSTEM ENGINEERING - 16 5 1,174 1,144 1,152 -30 -9 69,687 69,105 62,258 -582 16,847 105,697 97,427 8,270

3.2 - PROGRAM MANAGEMENT - 18 5 2,378 2,446 2,690 68 -245 150,695 149,075 148,708 -1,621 387 197,777 207,669 -9,9 12

3.3 - SYSTEM DATA BASE 5 553 553 373 0 180 19,195 18,988 16,667 -207 2,321 33,166 28,228 4,938

6.0 - INTERSEGMENT/SYSTEM LEVEL I&T 4 2,273 1,977 2,645 -296 -667 89,588 87,225 83,087 -2,363 4 ,138 175,837 175,540 297

6.1 - SYSTEM TEST EQUIPMENT - 20 5 493 493 931 0 -438 36,577 35,440 36,555 -1,137 -1,115 58,368 61,831 -3,463

6.2 - FACTORY SYSTEM LEVEL TEST- 22 5 692 550 776 -142 -227 20,308 19,880 18,140 -428 1,739 35,682 34,863 819

6.3 - EARLY ORBIT OPERATIONS - 24 5 959 806 836 -154 -32 29,887 29,144 26,181 -743 2,963 84,848 61,700 2,948

6.4 - ON-ORBIT TEST - 26 5 129 129 100 0 29 2,817 2,761 2,211 -55 551 17,139 17,146 -7

7.0 - OPERATIONS & SUPPORT 4 831 833 716 2 116 6,948 6,949 5,739 2 1,210 17,241 16,148 1,092

7.2 - SUSTAINING SUPPORT 29-30 5 36 36 2 0 34 265 265 105 0 161 848 722 126

7.3 - INTERIM MAINTENANCE 31-32 5 795 797 715 2 82 6,682 6,684 5,634 2 1,049 16,393 15,427 966

8.0 - SPECIAL STUDIES 4 162 165 184 3 -19 17,536 17,538 12,983 2 4 ,555 18,968 14,391 4,577

8.1 - INVESTIGATION & ANALYSIS 5 162 165 184 3 -19 17,536 17,538 12,983 2 4 ,555 18,968 14,391 4,577

SV 3 - SPACE VEHICLE 3 3 9,976 10,846 11,703 870 -857 282,966 273,432 284,698 -9,534 :8,734 505,178 502,407 2,772

1.0A - SPACE VEHICLE 4 9,769 10,605 11,459 836 -853 277,492 268,496 260,496 -8,996 :8,000 459,419 457,479 1,940

1.1A - SPACECRAFT BUS 5 1,196 2,244 2,138 1,049 107 59,329 52,072 49,951 -7,258 2,120 95,425 94,434 991

1.1.1A - STRUCTURES/PROP/THERMAL H OWE 6 57 1,014 1,195 956 -181 19,497 17,262 17,955 -2,235 -693 22,737 24,104 -1,367

1.1.2A - GUIDANCE NAVIGATION & CONTROL 6 314 104 103 -210 1 7,049 6,788 6,652 -261 136 7,801 7,792 10

1.1.3A - SOlAR ARRAYS & MECHANISMS 6 54 54 152 0 -98 9,993 7,484 7,399 -2,509 65 15,624 15,624 0

1.1.4A - HIGH POWER ELECTRONICS 6 343 348 -23 5 371 4,870 5,665 4,369 815 1,316 12,312 10,804 1,509

1.1.SA - TELEMETRY TRACK & CONTROL HOWE 6 0 0 16 0 -16 3,254 2,235 2,088 -1,019 147 3,254 3,135 119

1.1.6A - COMMAND/DATA HANDLING HOWE 6 119 63 225 -57 -163 11,281 9,262 9,276 -1,999 6 11,671 12,459 -787

1.1.7A - SPACECRAFT BUS FLIGHT SOFTWARE 6 70 70 54 0 16 220 220 177 0 43 5,629 5,911 -281

1.1.8A - SPACECRAFT BUS SEIPM 6 192 192 133 0 59 2,247 2,247 882 0 1,365 14,015 12,265 1,750

1.1.9A - SPACECRAFT BUS I&T 6 47 401 283 354 119 918 868 1,152 -49 -284 2,379 2,341 38

1.2A - EHF PAYLOAD 5 8,399 8,186 9,126 -213 -940 213,524 211 ,811 206,545 -1,713 5 ,266 332,260 331,376 884

1.2.7A - PAYLOAD 35-37-39-41-43 6 8,399 8,186 9,126 -213 -940 213,524 211 ,811 206,545 -1,713 5 ,266 332,260 331,376 884

56

COST PERFORMANCE REPORT Page 3of 3
FORMAT 1 ·WORK BREAKDOWN STRUCTURE DOLLARS IN: Thousands

8. PERFORMA NCE DATA

CURR ENT P ERIOD CUM ULATIVE TO DATE REPROGRAM A T COMPLETION

ITEM BUDGETED COST ACTUAL VAII1AHCE 8UDGETm COST ACTUAL VAR!AHCE ADJ USTMENTS

'WORl(WORl< COST WORK WOft{ WOftK COST WORK COST

SCHEDULED PERF<lftiED PERF<lftiED SCHEDULE COST SCHfDill.El) PEIV"ORMEO PEIV"ORMEO SCHEDULE COST VARIANCE BUDGET BUDGETED ESnMATEO VARIANCE

(1) (21 ~) (4) (S) (GI (1) 18) I') 110) (11) ~21 (13) 1 1~ 11~ 11<)

a. WBS EL EMENT

1.4A . SPACE VEH AGE/MAGE 5 14 14 0 0 14 1,948 1,948 1,555 0 393 2,478 2,478 0

1.5A - SPACE VEH SE/PM 5 125 125 94 0 31 1,300 1,775 1,401 ·25 374 12,081 12,016 65

1.6A - SPACE VEH I&T 5 35 35 101 0 -65 390 890 1,043 0 -153 17,176 17,176 0

3 OA - INTERSEGMENT SYS ENG/PGM MGMT 4 207 242 245 35 -3 5,474 4,936 4,202 -538 734 37,099 36,351 748

3.1A - SYSTEM ENGINEERING - 36 5 11 11 0 0 11 39 39 13 0 26 2,962 2,615 347

3.2A - PROGRAM MANAGEMENT - 36 5 196 230 245 35 -14 5,435 4,897 4,189 -538 708 29,502 29,218 284

3.3A - SYSTEM DATA BASE 5 0 0 0 0 0 0 0 0 0 0 4,635 4,518 117

6 OA - INTERSEGMENT/SYSTEM LEVEL I&T 4 0 0 0 0 0 0 0 0 0 0 8,661 8,577 83

6.1A - SYSTEM TEST EQUIPMENT 5 0 0 0 0 0 0 0 0 0 0 5,881 5,879 2

6.2A - FACTORY SYSTEM LEVEL TEST - 40 5 0 0 0 0 0 0 0 0 0 0 1,941 1,859 81

6.3A - EARLY ORBIT OPERATIONS - 42 5 0 0 0 0 0 0 0 0 0 0 839 839 0

UC43 - UCA3 3 0 0 0 0 0 39,500 39,500 39,500 0 0 39,500 39,500 0

b . COST OF M ONEY N 2 159 168 283 9 -115 8,503 8,215 9,363 -288 -1,168 13,269 15,516 -2,248

c . GENERAL & A DM INISTRA TIVE N 2 1,759 1,851 2,797 92 -947 104,197 101,879 115,341 -2,318 -13,462 155,036 178,190 -23,152

d . UNDISTRIB UTED B UDGET 2 10,991 10,991 0

e. SUBTOTAL (Pelformance
Measurement Baseline) 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 0 0 3,893,099 4,355,994 -462,895

f . MANAGEMENT RESERVE 2 0 8,268

g . TOTAL 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 0 0 3,901,367

0. RECONCILIATION TO CONTRA CT BUDGET BA SE

a. VARIANCE ADJUSTMENT I I I I ol ol I I I
b . TOTAL CONTRACT VARIA NCE I I I I -24,774 1 -355,620 1 I 3,901,36714,377,362 1 -475,995

57

Appendix B: EVM Equations (Keaton 2011)

Descriptive EVM
Measures

Equation Interpretation

Cost Variance (CV$) 𝐶𝑉$ = 𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 Difference between value and
cost of work accomplished

Normalized Cost
Variance (NCV) 𝑁𝐶𝑉 =

𝐶𝑉$
𝐵𝐴𝐶

Cost Variance relative to

contract size
Percent Cost

Variance (CV%) 𝐶𝑉% =
𝐶𝑉$
𝐵𝐶𝑊𝑃

∗ 100
Shows over and under budget

Schedule Variance
(SV$)

𝑆𝑉$ = 𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 Difference between value of
work accomplished and value

scheduled
Schedule Variance

(SVMonths) 𝑆𝑉𝑀𝑜𝑛𝑡ℎ𝑠 =
𝑆𝑉$
𝐵𝐶𝑊𝑆

Provides a time value for work

finished ahead and behind
schedule

Normalized Schedule
Variance (NSV) 𝑁𝑆𝑉 =

𝑆𝑉$
𝐵𝐴𝐶

Schedule Variance relative to

contract size
Percent Schedule
Variance (SV%) 𝑆𝑉% =

𝑆𝑉$
𝐵𝐶𝑊𝑆

∗ 100
Shows ahead and behind

schedule
Variance At

Completion (VAC)
𝑉𝐴𝐶 = 𝐵𝐴𝐶 − 𝐸𝐴𝐶 Difference between cost

budgeted and cost estimated
Cost Performance

Index (CPI) 𝐶𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐴𝐶𝑊𝑃

Compares the budget to the

amount of money spent

Schedule
Performance Index

(SPI)
𝑆𝑃𝐼 =

𝐵𝐶𝑊𝑃
𝐵𝐶𝑊𝑆

Compares actual value to the

value plan

Schedule Cost Index
(SCI)

𝑆𝐶𝐼 = 𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼

Composite Index
(CMI)

𝐶𝑀𝐼 = 𝛼𝐶𝑃𝐼 + 𝛽𝑆𝑃𝐼

To Complete
Performance Index

(TCPIEAC)
𝑇𝐶𝑃𝐼 =

(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃𝐶𝑈𝑀)
(𝐸𝐴𝐶 − 𝐴𝐶𝑊𝑃𝐶𝑈𝑀)

Measures cost efficiency
requirement to complete on-

budget
Percent Complete

(BAC) %Complete = �
𝐵𝐶𝑊𝑃𝐶𝑈𝑀
𝐵𝐴𝐶

� ∗ 100

Compares work plan to
program budget

Percent Complete
(Months)

%Complete

= �
𝑀𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑆𝑡𝑎𝑟𝑡 𝐷𝑎𝑡𝑒
𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡

�

∗ 100

Compares the amount of time
spent for a contract to the total

amount of time

58

Appendix C: Breakout of Data

Program Months of Data Validation (Yes/No)

B2-EHF 14 No

AMF JTRS SDD (BBX) 20 Yes

MM III GRP FRP '07 20 No

Non Line of Sight - Launch System (FCS Navy) 20 No

C130J BUIC Del Order 0003 22 No

LCS - CLIN 0008 AUSTAL 24 No

E-2D Advanced Hawkeye (AHE) 27 No

EFV SDD-2 27 Yes

B-2 RMP 28 No

FORCE XXI BATTLE COMMAND BRIGADE AND BELOW (FBCB2) 28 No

NPOESS 28 No

NMT EDM 30 No

C-130 Block 6.5.1 HCMC 31 No

E871209B (MH-60) 31 Yes

CH-53 32 Yes

V-22 33 Yes

WINT_INC2-M 33 No

ISPAN 34 No

MPS - FPM 37 No

UH-60M 37 No

WGS BLOCK II 37 No

MP-RTIP Phase 2 41 No

Blue Grass Chemical Agent Destruction Pilot Plant 42 No

DDG 1000 42 Yes

F-35 JSF System Development & Demonstration 42 No

Chem. Demil Stockp (Chem Demil CMA) 43 No

GPS MUE CLIN 002 (Navstar) 43 Yes

C130 Avionics Moderinzation Program 44 No

SBIRS 44 No

AEHF 45 No

C-5 Reliability Enhancement & Reengining Program SDD 45 No

MPEC JMPS-E (mps-exp ops) 45 No

SM6 45 No

MPS SEICR1 48 Yes

MOBILE USER OBJECTIVE SYSTEM (MUOS) 50 No

JLENS 52 No

P-8 52 No

No

59

Appendix D: Complete List of Initial Variables

Variable Name
EAC Lag 1
EAC Lag 2
EAC Lag 3
CPI*Previous EAC

SPI*s EAC

TSPI* EAC

TCPI* EAC

SCI* EAC

SV%* EAC

CV%*EAC

(% Difference Between ML and W)* EAC
(% Difference Between ML and B)*s EAC
(% Difference Between W and B)* EAC
(StDev CPI)* EAC
(StDev SPI)* EAC
(TSPI StDev)* EAC

(TCPI StDev)* EAC

(SCI StDev)* EAC

(SV% StDev)* EAC

(CV% StDev)*EAC

EAC Prediction CPI w/ no EAC Change
EAC Prediction Composite w/ no EAC Change
EAC Prediction CPI w/ EAC Change
EAC Prediction Composite w/ EAC Change
CPI Large w/ no EAC Change
CPI Medium w/ no EAC Change
CPI Small w/ no EAC Change
SPI Large w/ no EAC Change
SPI Medium w/ no EAC Change
SPI Small w/ no EAC Change
SCI Large w/ no EAC Change
SCI Medium w/ no EAC Change
SCI Small w/ no EAC Change
TCPI Large w/ no EAC Change
TCPI Medium w/ no EAC Change
TCPI Small w/ no EAC Change
TSPI Large w/ no EAC Change

60

TSPI Medium w/ no EAC Change
TSPI Small w/ no EAC Change
SV% Large w/ no EAC Change
SV% Medium w/ no EAC Change
SV% Small w/ no EAC Change
CV% Large w/ no EAC Change
CV% Medium w/ no EAC Change
CV% Small w/ no EAC Change
StDev CPI Large w/ no EAC Change
StDev CPI Small w/ no EAC Change
StDev SPI Large w/ no EAC Change
StDev SPI Small w/ no EAC Change
StDev SCI Large w/ no EAC Change
StDev SCI Small w/ no EAC Change
StDev SV% Large w/ no EAC Change
StDev SV% Small w/ no EAC Change
StDev TSPI Large w/ no EAC Change
StDev TSPI Small w/ no EAC Change
StDev CV% Large w/ EAC Change
StDev CV% Small w/ EAC Change
CPI Change 1 Month Large w/ no EAC Change
CPI Change 1 Month Small w/ no EAC Change
SPI Change 1 Month Large w/ no EAC Change
SPI Change 1 Month Small w/ no EAC Change
SCI Change 1 Month Large w/ no EAC Change
SCI Change 1 Month Small w/ no EAC Change
SV% Change 1 Month Large w/ no EAC Change
SV% Change 1 Month Small w/ no EAC Change
CV% Change 1 Month Large w/ no EAC Change
CV% Change 1 Month Small w/ no EAC Change
TSPI Change 1 Month Large w/ no EAC Change
TSPI Change 1 Month Small w/ no EAC Change
TCPI Change 1 Month Large w/ no EAC Change
TCPI Change 1 Month Small w/ no EAC Change
CPI Change 2 Month Large w/ no EAC Change
CPI Change 2 Month Small w/ no EAC Change
SPI Change 2 Month Large w/ no EAC Change
SPI Change 2 Month Small w/ no EAC Change
SCI Change 2 Month Large w/ no EAC Change

61

SCI Change 2 Month Small w/ no EAC Change
SV% Change 2 Month Large w/ no EAC Change
SV% Change 2 Month Small w/ no EAC Change
TCPI Change 2 Month Large w/ no EAC Change
TCPI Change 2 Month Small w/ no EAC Change
TSPI Change 2 Month Large w/ no EAC Change
TSPI Change 2 Month Small w/ no EAC Change
Large% Difference Between ML and W w/ no EAC Change
Large% Difference Between ML and B w/ no EAC Change
Large% Difference Between B and W w/ no EAC Change
CPI Large w/ EAC Change
CPI Medium w/ EAC Change
CPI Small w/ EAC Change
SPI Large w/ EAC Change
SPI Medium w/ EAC Change
SPI Small w/ EAC Change
SCI Large w/ EAC Change
SCI Medium w/ EAC Change
SCI Small w/ EAC Change
TCPI Large w/ EAC Change
TCPI Medium w/ EAC Change
TCPI Small w/ EAC Change
TSPI Large w/ EAC Change
TSPI Medium w/ EAC Change
TSPI Small w/ EAC Change
SV% Large w/ EAC Change
SV% Medium w/ EAC Change
SV% Small w/ EAC Change
CV% Large w/ EAC Change
CV% Medium w/ EAC Change
CV% Small w/ EAC Change
StDev CPI Large w/ EAC Change
StDev CPI Small w/ EAC Change
StDev SPI Large w/ EAC Change
StDev SPI Small w/ EAC Change
StDev SCI Large w/ EAC Change
StDev SCI Small w/ EAC Change
StDev SV% Large w/ EAC Change
StDev SV% Small w/ EAC Change

62

StDev TSPI Large w/ EAC Change
StDev TSPI Small w/ EAC Change
StDev CV% Large w/ EAC Change
StDev CV% Small w/ EAC Change
CPI Change 1 Month Large w/ EAC Change
CPI Change 1 Month Small w/ EAC Change
SPI Change 1 Month Large w/ EAC Change
SPI Change 1 Month Small w/ EAC Change
SCI Change 1 Month Large w/ EAC Change
SCI Change 1 Month Small w/ EAC Change
SV% Change 1 Month Large w/ EAC Change
SV% Change 1 Month Small w/ EAC Change
CV% Change 1 Month Large w/ EAC Change
CV% Change 1 Month Small w/ EAC Change
TSPI Change 1 Month Large w/ EAC Change
TSPI Change 1 Month Small w/ EAC Change
TCPI Change 1 Month Large w/ EAC Change
TCPI Change 1 Month Small w/ EAC Change
CPI Change 2 Month Large w/ EAC Change
CPI Change 2 Month Small w/ EAC Change
SPI Change 2 Month Large w/ EAC Change
SPI Change 2 Month Small w/ EAC Change
SCI Change 2 Month Large w/ EAC Change
SCI Change 2 Month Small w/ EAC Change
SV% Change 2 Month Large w/ EAC Change
SV% Change 2 Month Small w/ EAC Change
TCPI Change 2 Month Large w/ EAC Change
TCPI Change 2 Month Small w/ EAC Change
TSPI Change 2 Month Large w/ EAC Change
TSPI Change 2 Month Small w/ EAC Change
Large% Difference Between ML and W w/ EAC Change
Large% Difference Between ML and B w/ EAC Change
Large% Difference Between B and W w/ EAC Change

63

Appendix E: List and Definition of Variables for Backwards Stepwise Regression

Variable Description Equation Threshold

Intercept
The intercept for the
overall equation No equation No

CPI
Ratio of budgeted
work to actual work

𝐶𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐴𝐶𝑊𝑃

 No

SPI

Ratio of budgeted
work to scheduled
work

𝑆𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐵𝐶𝑊𝑆

 No

TCPI

Ratio of budgeted
performance to actual
performance

𝑇𝐶𝑃𝐼 =
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃)
(𝐸𝐴𝐶 − 𝐴𝐶𝑊𝑃)

No

TSPI

Ratio of the budgeted
performance to
schedule
performance. This
variable was only used
in initial 100 variables
and as part of
threshold variables.

𝑇𝐶𝑃𝐼 =
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃)
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑆)

SCI

Cost ratio multiplied
by schedule ratio

𝑆𝐶𝐼 = 𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼 No

%
Difference
Between
ML and B

The percentage
difference between the
contractor most likely
EAC and best EAC % 𝐷𝑖𝑓𝑓𝑀𝐿−𝐵 = 𝐸𝐴𝐶𝑀𝐿−𝐸𝐴𝐶𝐵

𝐸𝐴𝐶𝑀𝐿
 No

%
Difference
Between W
and B

The percentage
difference between the
contractor worst case
EAC and best EAC % 𝐷𝑖𝑓𝑓𝑊−𝐵 = 𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝐵

𝐸𝐴𝐶𝑊
 No

64

Standard
Deviation
CPI

A measure of the
variability of the last
three CPI’s 𝑆𝑡𝑑𝑒𝑣(𝐶𝑃𝐼) = 𝑆𝑡𝑑𝑒𝑣(𝐶𝑃𝐼𝑡,𝐶𝑃𝐼𝑡−1,𝐶𝑃𝐼𝑡−2) No

Standard
Deviation
SPI

A measure of the
variability of the last
three SPI’s 𝑆𝑡𝑑𝑒𝑣(𝑆𝑃𝐼) = 𝑆𝑡𝑑𝑒𝑣(𝑆𝑃𝐼𝑡,𝑆𝑃𝐼𝑡−1,𝑆𝑃𝐼𝑡−2) No

EAC
Prediction
CPI w/ no
EAC
Change

A gold card EAC
prediction based on
CPI that only turns on
if the EAC has not
changed by a threshold

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝐶𝑃𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
�

 Yes
EAC
Prediction
Composite
w/ no EAC
Change

A gold card EAC
prediction based on
SCI that only turns on
if the EAC has not
changed by a threshold

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝑆𝐶𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
�

 Yes
EAC
Prediction
CPI w/
EAC
Change

A gold card EAC
prediction based on
CPI that only turns on
if the EAC has
changed by a threshold

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝐶𝑃𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
�

 Yes
EAC
Prediction
Composite
w/ EAC
Change

A gold card EAC
prediction based on
SCI that only turns on
if the EAC has not
changed by a threshold

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝑆𝐶𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
�

 Yes

CPI Large
w/ EAC
Change

The CPI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝐶𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

65

throughout; however,
threshold 2 is unique
to this equation.

CPI Small
w/ EAC
Change

The CPI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝐶𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes Yes

SPI Small
w/ EAC
Change

The SPI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑆𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

SCI Large
w/ EAC
Change

The SCI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑆𝐶𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

66

TCPI
Small w/
EAC
Change

The TCPI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑇𝐶𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

TSPI
Large w/
EAC
Change

The TSPI exceeds
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑇𝑆𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

Standard
Deviation
CPI Large
w/ EAC
Change

The standard deviation
of the CPI exceeds
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑠𝑡𝑑𝑒𝑣(𝐶𝑃𝐼) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
�

 Yes

67

CPI Change
1 Month
Large w/
EAC
Change

The one-month change
in CPI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−1
𝐶𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

SPI Change
1 Month
Large w/
EAC
Change

The one-month change
in SPI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝑃𝐼𝑡−𝑆𝑃𝐼𝑡−1
𝑆𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

SCI Change
1 Month
Small w/
EAC
Change

The one-month change
in SCI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝐶𝐼𝑡−𝑆𝐶𝐼𝑡−1
𝑆𝐶𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

68

TSPI
Change 1
Month
Small w/
EAC
Change

The one-month change
in TSPI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑇𝑆𝑃𝐼−𝑇𝑆𝑃𝐼𝑡−1
𝑇𝑆𝑃𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

CPI Change
2 Month
Large w/
EAC
Change

The two-month change
in CPI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−2
𝐶𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

CPI Change
2 Month
Small w/
EAC
Change

The two-month change
in CPI is less than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−2
𝐶𝑃𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

69

SPI Change
2 Month
Large w/
EAC
Change

The two-month change
in SPI exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝑃𝐼𝑡−𝑆𝑃𝐼𝑡−2
𝑆𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

Large%
Difference
Between B
and W w/
EAC
Change

The percent difference
between best and
worst contractor EAC
exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝐵
𝐸𝐴𝐶𝑊

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

Small%
Difference
Between
ML and W
w/ no EAC
Change

The percent difference
between most likely
and worst contractor
EAC exceeds some
threshold and the most
likely EAC has
exceeded some
threshold. The
threshold for the EAC

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝑀𝐿
𝐸𝐴𝐶𝑊

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

70

change is constant
throughout; however,
threshold 2 is unique
to this equation.

Small%
Difference
Between
ML and B
w/ no EAC
Change

The percent difference
between most likely
and worst contractor
EAC is smaller than
some threshold and the
most likely EAC has
exceeded some
threshold. The
threshold for the EAC
change is constant
throughout; however,
threshold 2 is unique
to this equation.

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑀𝐿−𝐸𝐴𝐶𝐵
𝐸𝐴𝐶𝑀𝐿

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�
 Yes

71

Appendix F: Code for Algorithm

Dim SSE As String, first_dynamic As String, count_beta As Integer, dynamic_var() As
Double, Sensitivity As Integer, Num_Var As Integer, solver_range As Variant,
remove_count As Integer, Solver_Count As Long, count_NA As Integer, numberx As
Long, remove_var_done As Integer
Dim Starting_point As Integer, Count_dynamic As Integer, move_dynamic_var As
Integer, Test_order_SSE As Double, best_order As Integer, Max_num_var As String,
Max_P As Double, Final_Optimize As Integer, place_SSE As Variant,
Final_Optimize_Percent As Double, DevSq As Double, Passing_P As Integer
Option Explicit
Sub get_inputs()
Dim count As Integer
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
remove_count = 0
first_dynamic = InputBox("What is the furthest left dynamic variable cell location", "
beta selection")
Max_num_var = InputBox("What is the greatest amount of variables you wish to have", "
Number of Variables")
Range("b6").Select
numberx = Range(Selection, Selection.End(xlDown)).count
Application.ScreenUpdating = False
Range("B2").Select
Range(Selection, Selection.End(xlToRight)).Select
Selection.Copy
Range("b2").Offset(5 + numberx, 0).Select
ActiveSheet.Paste
Application.CutCopyMode = False

Call Clear
Worksheets("MainCalculations").Select
Range(SSE).Offset(3, 0).Select
With Selection
 .Value = Now
End With
Range(first_dynamic).Offset(-1, -remove_count).Select
Count_dynamic = Range(Selection, Selection.End(xlToRight)).count
ReDim dynamic_var(1 To Count_dynamic, 1 To 5) As Double
Final_Optimize_Percent = 1
numberx = Range(Selection, Selection.End(xlDown)).count
Passing_P = 0

72

Call Determine_Dynamic_Start
Call Optimize_Dynamic
Call Calculations
Call Determine_Max_P
Call Clear

Do Until (Max_P < (0.05 / (count_beta - 1)) And Max_num_var >= (count_beta - 1)) Or
count_beta = 1
Passing_P = 0
 If Max_P > (0.05 / (count_beta - 1)) Then
 Call Remove_P_values
 remove_count = remove_count + 1
 Call Determine_Dynamic_Start
 Call Optimize_Dynamic
 Call Calculations
 Call Clear
 Call Determine_Max_P
 Else
Passing_P = 1
 Call Remove_Standard_Beta
 remove_count = remove_count + 1
 Call Determine_Dynamic_Start
 Call Optimize_Dynamic
 Call Calculations
 Call Clear
 Call Determine_Max_P
 End If
Loop

remove_var_done = 1
Call Determine_Dynamic_Order
Final_Optimize = 8
Final_Optimize_Percent = 0.000001
Call Optimize_Dynamic
Call Final_Calculations

Worksheets("MainCalculations").Select
Range(SSE).Offset(4, 0).Select
With Selection
 .Value = Now
End With
Range(SSE).Offset(5, 0) = Solver_Count
End Sub
Sub Determine_Dynamic_Order()

73

Dim Best_order_SSE As Double, count As Integer
Worksheets("MainCalculations").Select
Starting_point = 0
Range(first_dynamic).Offset(-1, -remove_count).Select
Count_dynamic = Range(Selection, Selection.End(xlToRight)).count

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE

count = 0

Do Until Starting_point = Count_dynamic - 1 - count_NA
 count = 0
 Best_order_SSE = 1 * 10 ^ 10
 move_dynamic_var = 0
 Do Until move_dynamic_var = Count_dynamic - Starting_point - count_NA
 If move_dynamic_var <> 0 Then
 Call move_dynamic
 End If
 Call Determine_Dynamic_Start
 Call Optimize_Dynamic
 If Test_order_SSE < Best_order_SSE Then
 Best_order_SSE = Test_order_SSE
 best_order = move_dynamic_var
 End If
 move_dynamic_var = move_dynamic_var + 1
 count = count + 1
 Loop
 move_dynamic_var = count - best_order - 1
 If move_dynamic_var <> 0 Then
 Range(first_dynamic).Offset(-1, Starting_point + move_dynamic_var -
remove_count).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Cut
 Range(first_dynamic).Offset(-1, Starting_point - remove_count).Select
 Selection.Insert Shift:=xlToRight
 End If
 Starting_point = Starting_point + 1
Loop

End Sub

74

Sub solver_solve()
Dim solver_range As Variant, result As Variant
SolverOptions MaxTime:=2000, Iterations:=20000, Precision:=0.005,
AssumeLinear:=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1,
IntTolerance:=5, Scaling:=False, Convergence:=0.005, AssumeNonNeg:=False
Worksheets("StatisticalCalculations").Range("XFD1") = count_beta
solver_range = Worksheets("StatisticalCalculations").Range("XFD19")
SolverOk SetCell:=SSE, MaxMinVal:=2, ValueOf:="0",
ByChange:=Range(solver_range)
result = SolverSolve(True, True)
SolverSolve UserFinish:=True
Solver_Count = Solver_Count + 1

End Sub
Sub Determine_Dynamic_Start()
Dim count As Integer, Count_T As Integer, best_sse As Double, test_SSE As Double,
Count_Overall As Integer, test_dependents As Variant, no_error As Integer

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
no_error = 0
count = 0

count = 0

If remove_var_done = 0 Then

NA_Finder_Start:
 Do Until count = Count_dynamic
 On Error GoTo Error_Handler_Start
 test_dependents = Worksheets("MainCalculations").Range(first_dynamic).Offset(0,
count - remove_count).Dependents
 count = count + 1
 Loop

count = 0
count_NA = 0

75

'Count NA dynamic variables
 Do Until count = Count_dynamic
 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA" Then
 count_NA = count_NA + 1
 End If
 count = count + 1
 Loop

count = 0

'Move NA dynamic variables
 Do Until count = Count_dynamic - count_NA
 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA" Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count -
remove_count).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Cut
 Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count -
remove_count).Select
 Selection.End(xlToRight).Select
 Selection.Offset(0, 1).Select
 Selection.Insert Shift:=xlToRight
 count = -1
 End If
 count = count + 1
 Loop
End If

count = 0

 'Enter low end of range for dynamic variables
 Do Until count = Count_dynamic
 dynamic_var(count + 1, 2) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(1, count - remove_count)
 count = count + 1
 Loop

count = 0

 'Enter high end of range for dynamic variables
 Do Until count = Count_dynamic

76

 dynamic_var(count + 1, 3) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(2, count - remove_count)
 count = count + 1
 Loop

count = 0

 'Enter range of dynamic variable
 Do Until count = Count_dynamic
 dynamic_var(count + 1, 4) = dynamic_var(count + 1, 3) - dynamic_var(count + 1, 2)
 count = count + 1
 Loop

'Find starting point for the dynamic variables
Do Until Count_Overall = 1
count = 0

 Do Until count = Count_dynamic - count_NA

 no_error = 0
 Count_T = 0
 If count = 0 And Count_Overall = 0 Then
 best_sse = 1 * 10 ^ 100
 End If

 Do Until Count_T = 20

 If Count_T = 0 Then
 dynamic_var(count + 1, 1) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count)
 End If

 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = _
 dynamic_var(count + 1, 2) + (dynamic_var(count + 1, 4) / 20) * (Count_T)
 Call solver_solve
 test_SSE = Worksheets("MainCalculations").Range(SSE)

 If test_SSE < best_sse Then
 best_sse = test_SSE
 'Save Best SSE for starting point
 dynamic_var(count + 1, 5) = best_sse
 dynamic_var(count + 1, 1) = dynamic_var(count + 1, 2) + (dynamic_var(count +
1, 4) / 20) * (Count_T)
 End If

77

 Count_T = Count_T + 1
 no_error = 1

Error_Handler_Start:
 If no_error = 0 Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA"
 On Error GoTo 0
 count = count + 1
 Resume NA_Finder_Start
 End If

 Loop
If no_error = 1 Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = dynamic_var(count + 1, 1)
 Call solver_solve
End If
 count = count + 1
 Loop
Count_Overall = Count_Overall + 1
Loop

End Sub
Sub Optimize_Dynamic()
Dim Change As Double, Count_Overall As Integer, count As Integer, Count_T As
Integer, Percent_Change As Double, old_value As Double, old_sse As Double,
Value_change_percent As Double, test_dependents As Variant
Dim value_change As Double, test_SSE As Double, best_sse, response1 As Variant,
start_value As Double, start_sse As Double, positive_direction_sse As Double,
negative_direction_sse As Double, no_error As Integer
Count_Overall = 0
Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
count = 0
no_error = 0
Range("b6").Select
numberx = Range(Selection, Selection.End(xlDown)).count

count = 0

78

If remove_var_done = 0 Then

'Find NA's
NA_Finder_Optimize:
 Do Until count = Count_dynamic
 On Error GoTo Error_Handler_Optimize
 test_dependents = Worksheets("MainCalculations").Range(first_dynamic).Offset(0,
count - remove_count).Dependents
 count = count + 1
 Loop

count = 0
count_NA = 0

'Count NA dynamic variables
 Do Until count = Count_dynamic
 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA" Then
 count_NA = count_NA + 1
 End If
 count = count + 1
 Loop

count = 0

'Move NA dynamic variables
 Do Until count = Count_dynamic - count_NA
 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA" Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count -
remove_count).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Cut
 Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count -
remove_count).Select
 Selection.End(xlToRight).Select
 Selection.Offset(0, 1).Select
 Selection.Insert Shift:=xlToRight
 count = -1
 End If
 count = count + 1
 Loop

End If

79

count = 0

 'Enter low end of range for dynamic variables
 Do Until count = Count_dynamic
 dynamic_var(count + 1, 2) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(1, count - remove_count)
 count = count + 1
 Loop

count = 0

 'Enter high end of range for dynamic variables
 Do Until count = Count_dynamic
 dynamic_var(count + 1, 3) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(2, count - remove_count)
 count = count + 1
 Loop

count = 0

 'Enter range of dynamic variable
 Do Until count = Count_dynamic
 dynamic_var(count + 1, 4) = dynamic_var(count + 1, 3) - dynamic_var(count + 1, 2)
 count = count + 1
 Loop

count = 0

Do Until Count_Overall = 1 + Final_Optimize

count = 0

Do Until count = Count_dynamic - count_NA

 Count_T = 0
 Percent_Change = 0.001
 positive_direction_sse = 10 ^ 12
 negative_direction_sse = 10 ^ 12

 Do Until Percent_Change >= 0 And Percent_Change < 0.0001 *
Final_Optimize_Percent

If Count_T = 0 Then

80

 start_value = Worksheets("MainCalculations").Range(first_dynamic).Offset(0,
count - remove_count)
 start_sse = Worksheets("MainCalculations").Range(SSE)

 'save old coefficients if starting values better (hard for solver to optimize when
radically different)
 Range("b2").Select
 Range(Selection, Selection.End(xlToRight)).Copy
 Range("b2").Offset(5 + numberx, 0).Select
 ActiveSheet.Paste
 Application.CutCopyMode = False

 old_value = start_value
 old_sse = start_sse

'determine change direction
 Change = (dynamic_var(count + 1, 4) / 40) / (Count_Overall + 1)

 'Check to make sure positive change isn't outside positive range
 If old_value + Change < dynamic_var(count + 1, 3) Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = _
 old_value + Change
 Call solver_solve
 positive_direction_sse = Worksheets("MainCalculations").Range(SSE)
 Else
 positive_direction_sse = 10 ^ 12
 End If

 'Check to make sure positive change isn't outside positive range
 If old_value - Change > dynamic_var(count + 1, 2) Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = _
 old_value - Change
 Call solver_solve
 negative_direction_sse = Worksheets("MainCalculations").Range(SSE)
 Else
 negative_direction_sse = 10 ^ 12
 End If
 If negative_direction_sse < positive_direction_sse Then
 Change = Change * -1
 test_SSE = negative_direction_sse
 Else
 test_SSE = positive_direction_sse
 End If

81

 old_value = old_value + Change
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = old_value
 Call solver_solve
End If

If Count_T <> 0 Then

 old_sse = Worksheets("MainCalculations").Range(SSE)
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = _
 old_value + Change
 old_value = Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count
- remove_count)
 Call solver_solve
 test_SSE = Worksheets("MainCalculations").Range(SSE)
 End If

 Percent_Change = (old_sse - test_SSE) / old_sse

If Count_T = 200 Then
 Percent_Change = 0
End If

 If old_sse < test_SSE Then
 Change = Change * -0.5
 End If

 Count_T = Count_T + 1

If old_value + Change < dynamic_var(count + 1, 2) Or old_value + Change >
dynamic_var(count + 1, 3) Then
 Percent_Change = 0
End If

 Loop

 'save old value in array
 dynamic_var(count + 1, 1) = old_value

 'check to make sure not outside of lower range

82

 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) < dynamic_var(count + 1, 2) Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = dynamic_var(count + 1, 2)
 Call solver_solve
 best_sse = Worksheets("MainCalculations").Range(SSE)
 dynamic_var(count + 1, 1) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count)
 dynamic_var(count + 1, 5) = best_sse
 Percent_Change = 0
 End If

 'check to make sure not outside of upper range
 If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) > dynamic_var(count + 1, 3) Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = dynamic_var(count + 1, 3)
 Call solver_solve
 test_SSE = Worksheets("MainCalculations").Range(SSE)
 dynamic_var(count + 1, 1) =
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count)
 dynamic_var(count + 1, 5) = best_sse
 Percent_Change = 0
 End If

 'check to make sure new sse is better than start sse
 If start_sse < test_SSE Then
 Range("b2").Offset(5 + numberx, 0).Select
 Range(Selection, Selection.End(xlToRight)).Copy
 Range("b2").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
 dynamic_var(count + 1, 1) = start_value
 start_sse = best_sse
 test_SSE = best_sse
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = start_value
 Call solver_solve
 End If

 Call solver_solve
 best_sse = Range(SSE)
 dynamic_var(count + 1, 5) = best_sse

 count = count + 1

83

 Loop
Call solver_solve
Test_order_SSE = Range(SSE)
Count_Overall = Count_Overall + 1
Loop

 no_error = 1

Error_Handler_Optimize:
 If no_error = 0 Then
 Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count -
remove_count) = "NA"
 On Error GoTo 0
 count = count + 1
 Resume NA_Finder_Optimize
 End If

 Application.DisplayStatusBar = True
 If Passing_P = 0 Then
 Application.StatusBar = "Failing P's, " & count_beta & "Var's, MAPE " &
Round(Range(SSE).Offset(1, 0), 2)
 Else
 Application.StatusBar = "Failing P's, " & count_beta & "Var's, MAPE " &
Round(Range(SSE).Offset(1, 0), 2)
 End If
End Sub
Sub Calculations()
Dim title_end2, count_v As Long, count_h As Long, title_end3 As Variant, count_find
As Integer, SE_value As Double, result As Variant, count As Integer
Dim endval As String, endval2 As String, Title_end As String, tstat_value As Double,
xbar As Double, stdev_x As Double, Sum_stdBeta As Double, Error_range As Variant

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Range("b6").Select
numberx = Range(Selection, Selection.End(xlDown)).count

'Inverse Matrix Calculation
Worksheets("MainCalculations").Select
Worksheets("StatisticalCalculations").Select
Range("XFD1") = count_beta

84

Range("XFD3") = numberx
endval2 = Range("xfd4")
endval = Range("XFD2")
Title_end = Range("XFD5")
title_end2 = Range("xfd6")
Worksheets("StatisticalCalculations").Activate
Range("h2" & ":" & endval).Select
 Selection.FormulaArray = _
"=MINVERSE(MMULT(TRANSPOSE(MainCalculations!b6:" & endval2 &
"),MainCalculations!b6:" & endval2 & "))"

 'Title inverse matrix
 Range("h1:" & Title_end).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h1:" & Title_end) = "X Inverse Matrix"

'Fill in chart
Worksheets("StatisticalCalculations").Range("c3") = count_beta - 1
Worksheets("StatisticalCalculations").Range("c4") = numberx - count_beta
Worksheets("StatisticalCalculations").Range("c5") = numberx - 1
Worksheets("StatisticalCalculations").Range("b4") =
Worksheets("MainCalculations").Range(SSE)
Worksheets("StatisticalCalculations").Range("b5") =
Application.WorksheetFunction.DevSq(Worksheets("MainCalculations").Range("A6:A"
& numberx + 5))
Worksheets("StatisticalCalculations").Range("g7") = numberx
Worksheets("StatisticalCalculations").Range("g8") = count_beta

'Variance-covariance matrix
count_v = 0
count_h = 0
Do Until count_h = count_beta
 Do Until count_v = count_beta

85

 Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + count_v,
count_h) = _
 Worksheets("StatisticalCalculations").Range("h2").Offset(count_v, count_h) *
Worksheets("StatisticalCalculations").Range("d4")
 count_v = count_v + 1
 Loop
 count_v = 0
 count_h = count_h + 1

Loop

'Title variance covariance matrix
 Range("h" & count_beta + 3 & ":" & title_end2).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h" & count_beta + 3 & ":" & title_end2) = "Variance-Covariance Matrix"

'Correlation matrix

count_v = 0
count_h = 0
Worksheets("StatisticalCalculations").Range("XFD11") = 3
Worksheets("StatisticalCalculations").Range("XFD12") = 3
Dim static_start As String, static_end As String, dynamic_start As String, dynamic_end
As String
Do Until count_h = count_beta - 1

 Do Until count_v = count_beta - 1

static_start = Worksheets("StatisticalCalculations").Range("XFD7")
static_end = Worksheets("StatisticalCalculations").Range("XFD8")
dynamic_start = Worksheets("StatisticalCalculations").Range("XFD9")
dynamic_end = Worksheets("StatisticalCalculations").Range("XFD10")

86

 Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta * 2 + 4 +
count_v, count_h) = _
 "=correl(MainCalculations!" & static_start & ":" & static_end &
",MainCalculations!" & dynamic_start & ":" & dynamic_end & ")"

 count_v = count_v + 1
 Worksheets("StatisticalCalculations").Range("XFD12") = 3 + count_v

 Loop

 count_v = 0
 count_h = count_h + 1
 Worksheets("StatisticalCalculations").Range("XFD11") = 3 + count_h
 Worksheets("StatisticalCalculations").Range("XFD12") = 3
Loop

'Title Correlation matrix

title_end3 = Worksheets("StatisticalCalculations").Range("XFD13")

 Range("h" & count_beta * 2 + 5 & ":" & title_end3).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h" & count_beta * 2 + 5 & ":" & title_end3) = "Correlation Matrix"

'P-Value Variables

count = 0

Do Until count = count_beta

87

SE_value = (Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 +
count, count)) ^ 0.5
tstat_value = Worksheets("MainCalculations").Range("B2").Offset(0, count) / SE_value
Worksheets("MainCalculations").Range("B5").Offset(0, count) = _
Application.WorksheetFunction.TDist(Abs(tstat_value),
Worksheets("StatisticalCalculations").Range("C4"), 1) * 2

count = count + 1

Loop

count = 0

'Calculate Standardized Beta's

 Sheets("MainCalculations").Select
 Cells.Select
 Range("C26").Activate
 Selection.Copy
 Sheets("StandardBeta").Select
 Range("A1").Select
 ActiveSheet.Paste
 Range("A1").Select
 Application.CutCopyMode = False
 Sheets("StandardBeta").Select
 Rows("1:5").Select
 Selection.ClearFormats
 Range("A1").Select
 count_h = 0

 Do Until count_h = count_beta - 1
 count_v = 0
 Worksheets("MainCalculations").Select
 Worksheets("MainCalculations").Range("C6").Offset(0, count_h).Select
 Range(Selection, Selection.End(xlDown)).Select
 xbar = Application.WorksheetFunction.Average(Selection)
 stdev_x = Application.WorksheetFunction.StDev(Selection)
 Worksheets("StandardBeta").Select

 Do Until count_v = numberx
 Range("C6").Offset(count_v, count_h) =
(Worksheets("MainCalculations").Range("C6").Offset(count_v, count_h) - xbar) /
stdev_x
 count_v = count_v + 1
 Loop

88

 count_h = count_h + 1
 Loop

Call solver_solve

count = 0

 Do Until count = count_beta - 1
 Range("C3").Offset(0, count) = Abs(Range("C2").Offset(0, count))
 count = count + 1
 Loop

Range("C3").Select
Range(Selection, Selection.End(xlToRight)).Select
Sum_stdBeta = Application.WorksheetFunction.Sum(Selection)

count = 0

 Do Until count = count_beta - 1
 Range("C4").Offset(0, count) = Abs(Range("C3").Offset(0, count)) / Sum_stdBeta
 count = count + 1
 Loop

 Range("C4").Select
 Range(Selection, Selection.End(xlToRight)).Select
 Selection.Copy
 Worksheets("MainCalculations").Select
 Worksheets("MainCalculations").Range("C4").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
 Range("A4") = "Standard Beta's"

Worksheets("MainCalculations").Select
End Sub
Sub Clear()
Worksheets("MainCalculations").Select
Range("b6").Select
numberx = Range(Selection, Selection.End(xlDown)).count

 Worksheets("StatisticalCalculations").Activate
 Range("H1:HZ703").Select
 Selection.Clear
 Range("G11").Select
 Range(Selection, Selection.End(xlToLeft)).Select

89

 Range("A11:G6119").Select
 Range("G11").Activate
 Selection.Clear
 Range("E8,E7,E6,C6,B5,B4,C3,C4,C5,F4,F5,G6,G7,G8,G10").Select
 Range("G8").Activate
 Selection.ClearContents
 Range("C20").Select
 Sheets("BPtest").Select
 Cells.Select
 Range("C20").Activate
 Selection.ClearContents
 Selection.ClearContents
 Sheets("StandardBeta").Select
 Cells.Select
 Range("L15").Activate
 Selection.Clear
 Range("A1").Select
Worksheets("MainCalculations").Select
Range("b2").Offset(5 + numberx, 0).Select
Range(Selection, Selection.End(xlToRight)).Select
Selection.Clear
End Sub
Sub move_dynamic()

 Range(first_dynamic).Offset(-1, Starting_point + move_dynamic_var -
remove_count).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Cut
 Range(first_dynamic).Offset(-1, Starting_point - remove_count).Select
 Selection.Insert Shift:=xlToRight
End Sub
Sub Remove_P_values()
Dim count As Integer, Max_Parent As Double, Min_None As Double, Min_Cross As
Double, Min_Power As Double
Dim test_parent As Double, test_none As Double, test_power As Double, test_cross As
Double, Max_P As Double, Temp As Variant, Mypos As Variant, strTemp As Variant
Dim left_word As String, right_word As String, word_length As Long, and_position As
Long, Min_Cross_Pos As Long, Min_Power_Pos As Long, Min_None_Pos As Long,
Max_Parent_Pos As Long
Dim Test_Text As String, left_word_test As String, right_word_test As String,
left_word_parent As Integer, right_word_parent As Integer, found_parent As Integer,
Power_parent As Integer

Worksheets("MainCalculations").Select

90

Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
count = 0
test_none = 1
test_power = 1
test_cross = 1
Min_None = 1
Min_Cross = 1
Min_Power = 1

'determine Min None stdBeta of failing p-values
Do Until count = count_beta - 1
 If UCase(Range("C5").Offset(-2, count)) = "NONE" And Range("C5").Offset(0,
count) > 0.05 / count_beta Then
 test_none = Range("C4").Offset(0, count)
 If test_none < Min_None Then
 Min_None = test_none
 Min_None_Pos = count
 End If
 End If
 count = count + 1
 Loop

count = 0

'determine Min Power stdBeta of failing p-values
 Do Until count = count_beta - 1
 If UCase(Range("C5").Offset(-2, count)) = "POWER" And Range("C5").Offset(0,
count) > 0.05 / count_beta Then
 test_power = Range("C4").Offset(0, count)
 If test_power < Min_Power Then
 Min_Power = test_power
 Min_Power_Pos = count
 End If
 End If
 count = count + 1
 Loop

count = 0

'determine Min Cross stdBeta of failing p-values
 Do Until count = count_beta - 1

91

 If UCase(Range("C5").Offset(-2, count)) = "CROSS" And Range("C5").Offset(0,
count) > 0.05 / count_beta Then
 test_cross = Range("C4").Offset(0, count)
 If test_cross < Min_Cross Then
 Min_Cross = test_cross
 Min_Cross_Pos = count
 End If
 End If
 count = count + 1
 Loop

count = 0

'Remove Max cross variable if it has a higher p value than max power and alpha crit
If Min_Cross <> 1 And Min_Cross < Min_Power And Min_Cross < Min_None Then

 'find crosses and remove parent label
 strTemp = Range("C1").Offset(0, Min_Cross_Pos)
 word_length = Len(strTemp)
 and_position = InStr(1, strTemp, "&", vbTextCompare)
 left_word = Left(strTemp, and_position - 1)
 right_word = Right(strTemp, word_length - and_position)

 Do Until count = count_beta

 Test_Text = Range("C1").Offset(0, count)

 If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <>
UCase(strTemp) Then

 word_length = Len(Test_Text)
 and_position = InStr(1, Test_Text, "&", vbTextCompare)
 left_word_test = Left(Test_Text, and_position - 1)
 right_word_test = Right(Test_Text, word_length - and_position)

 'Check to see if the to be removed first variable has any other crosses
 If left_word_test = left_word Or right_word_test = left_word Then
 left_word_parent = 1
 End If

 'Check to see if the to be removed first variable has any other crosses
 If right_word_test = right_word Or left_word_test = right_word Then
 right_word_parent = 1
 End If

92

 End If

 If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text)
<> UCase(strTemp) Then

 'Check to see if the first word to be removed first variable has any other
Powers
 If Test_Text = left_word Then
 left_word_parent = 1
 End If

 'Check to see if the second word to be removed first variable has any other
Powers
 If Test_Text = right_word Then
 right_word_parent = 1
 End If

 End If

 count = count + 1

 Loop

 count = 0

 If right_word_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = right_word Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

 count = 0
 found_parent = 0

 If left_word_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

93

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = left_word Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_Cross_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Exit Sub

End If

'Remove max power variable if less than alpha crit
If Min_Power <> 1 And Min_Power < Min_None Then

 'find crosses and remove parent label
 strTemp = Range("C1").Offset(0, Min_Power_Pos)

 Do Until count = count_beta

 Test_Text = Range("C1").Offset(0, count)

94

 If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <>
UCase(strTemp) Then

 word_length = Len(Test_Text)
 and_position = InStr(1, Test_Text, "&", vbTextCompare)
 left_word_test = Left(Test_Text, and_position - 1)
 right_word_test = Right(Test_Text, word_length - and_position)

 'Check to see if the to be removed variable has any other crosses
 If left_word_test = strTemp Or right_word_test = strTemp Then
 Power_parent = 1
 End If

 End If

 If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text)
<> UCase(strTemp) Then

 'Check to see if the first word to be removed first variable has any other
Powers
 If Test_Text = strTemp Then
 Power_parent = 1
 End If

 End If

 count = count + 1

 Loop

 count = 0

 If Power_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = strTemp Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

95

Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_Power_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Exit Sub

End If

'Remove Max None if Cross and Power are both less than alpha crit
Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_None_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

96

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE

End Sub
Sub Remove_Standard_Beta()
Dim Min_stdBeta As Double, Test_stdBeta As Double, Min_stdBeta_Pos As Integer,
Min_stdBeta_Type As String, left_word_parent As Integer, right_word_parent As Integer
Dim count As Integer, strTemp As String, word_length As Integer, and_position As
Integer, left_word As String, right_word As String, Test_Text As String, left_word_test
As String
Dim right_word_test As String, found_parent As Integer, Power_parent As Integer

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
Min_stdBeta = 1

'Determine min standard beta
 Do Until count = count_beta - 1
 If UCase(Range("C3").Offset(0, count)) <> "PARENT" Then
 Test_stdBeta = Range("C4").Offset(0, count)
 If Test_stdBeta < Min_stdBeta Then
 Min_stdBeta = Test_stdBeta
 Min_stdBeta_Pos = count
 Min_stdBeta_Type = Range("C3").Offset(0, count)
 End If
 End If

 count = count + 1

 Loop

If UCase(Min_stdBeta_Type) = "CROSS" Then

count = 0

 'find crosses and remove parent label
 strTemp = Range("C1").Offset(0, Min_stdBeta_Pos)
 word_length = Len(strTemp)
 and_position = InStr(1, strTemp, "&", vbTextCompare)
 left_word = Left(strTemp, and_position - 1)

97

 right_word = Right(strTemp, word_length - and_position)

 Do Until count = count_beta

 Test_Text = Range("C1").Offset(0, count)

 If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <>
UCase(strTemp) Then

 word_length = Len(Test_Text)
 and_position = InStr(1, Test_Text, "&", vbTextCompare)
 left_word_test = Left(Test_Text, and_position - 1)
 right_word_test = Right(Test_Text, word_length - and_position)

 'Check to see if the to be removed first variable has any other crosses
 If left_word_test = left_word Or right_word_test = left_word Then
 left_word_parent = 1
 End If

 'Check to see if the to be removed first variable has any other crosses
 If right_word_test = right_word Or left_word_test = right_word Then
 right_word_parent = 1
 End If

 End If

 If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text)
<> UCase(strTemp) Then

 'Check to see if the first word to be removed first variable has any other
Powers
 If Test_Text = left_word Then
 left_word_parent = 1
 End If

 'Check to see if the second word to be removed first variable has any other
Powers
 If Test_Text = right_word Then
 right_word_parent = 1
 End If

 End If

98

 count = count + 1

 Loop

 count = 0

 If right_word_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = right_word Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

 count = 0
 found_parent = 0

 If left_word_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = left_word Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

'Make new sheet to place viable model
If Max_num_var * 1.2 > count_beta Then
 Sheets.Add After:=Sheets(Sheets.count)
 Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's"
 Sheets("MainCalculations").Select
 Cells.Select
 Application.Run "CB.CopyKeyPress"
 Worksheets("Pass, " & count_beta & " var's").Select
 ActiveSheet.Paste
 Sheets("StatisticalCalculations").Select

99

 Range("A1:G10").Select
 Application.Run "CB.CopyKeyPress"
 Sheets("Pass, " & count_beta & " var's").Select
 Range("XEX1").Select
 ActiveSheet.Paste
End If

Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_stdBeta_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count

place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Exit Sub

End If

If UCase(Min_stdBeta_Type) = "POWER" Then

count = 0

 'find crosses and remove parent label
 strTemp = Range("C1").Offset(0, Min_stdBeta_Pos)

 Do Until count = count_beta

 Test_Text = Range("C1").Offset(0, count)

100

 If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <>
UCase(strTemp) Then

 word_length = Len(Test_Text)
 and_position = InStr(1, Test_Text, "&", vbTextCompare)
 count = count + 1
 left_word_test = Left(Test_Text, and_position - 1)
 right_word_test = Right(Test_Text, word_length - and_position)

 'Check to see if the to be removed variable has any other crosses
 If left_word_test = strTemp Or right_word_test = strTemp Then
 Power_parent = 1
 End If

 End If

 If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text)
<> UCase(strTemp) Then

 'Check to see if the first word to be removed first variable has any other
Powers
 If Test_Text = strTemp Then
 Power_parent = 1
 End If

 End If

 count = count + 1

 Loop

 count = 0

 If Power_parent = 0 Then
 Do Until found_parent = 1 Or count = count_beta - 1

 If UCase(Range("C3").Offset(0, count)) = "PARENT" And
Range("C1").Offset(0, count) = strTemp Then
 Range("C3").Offset(0, count) = "None"
 found_parent = 1
 End If
 count = count + 1

 Loop
 End If

101

'Make new sheet to place viable model
If Max_num_var * 1.2 > count_beta Then
 Sheets.Add After:=Sheets(Sheets.count)
 Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's"
 Sheets("MainCalculations").Select
 Cells.Select
 Application.Run "CB.CopyKeyPress"
 Worksheets("Pass, " & count_beta & " var's").Select
 ActiveSheet.Paste
 Sheets("StatisticalCalculations").Select
 Range("A1:G10").Select
 Application.Run "CB.CopyKeyPress"
 Sheets("Pass, " & count_beta & " var's").Select
 Range("XEX1").Select
 ActiveSheet.Paste
End If

Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_stdBeta_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count

place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Exit Sub

End If

If UCase(Min_stdBeta_Type) = "NONE" Then

102

'Make new sheet to place viable model
If Max_num_var * 1.2 > count_beta Then
 Sheets.Add After:=Sheets(Sheets.count)
 Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's"
 Sheets("MainCalculations").Select
 Cells.Select
 Application.Run "CB.CopyKeyPress"
 Worksheets("Pass, " & count_beta & " var's").Select
 ActiveSheet.Paste
 Sheets("StatisticalCalculations").Select
 Range("A1:G10").Select
 Application.Run "CB.CopyKeyPress"
 Sheets("Pass, " & count_beta & " var's").Select
 Range("XEX1").Select
 ActiveSheet.Paste
End If

Worksheets("RemoveVariables").Select
Columns("A:A").Select
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove
Worksheets("MainCalculations").Select
Range("C1").Offset(0, Min_stdBeta_Pos).Select
Range(Selection, Selection.End(xlDown)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("RemoveVariables").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Sheets("MainCalculations").Select
Application.CutCopyMode = False
Selection.Delete Shift:=xlToLeft

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count

place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
End If

End Sub
Sub Determine_Max_P()
Dim test_p As Double, count As Integer

103

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
Worksheets("MainCalculations").Select
Max_P = 0
 'find max p value of non parent variables
 Do Until count = count_beta - 1
 If UCase(Range("C5").Offset(-2, count)) <> "PARENT" Then
 test_p = Range("C5").Offset(0, count)
 If test_p > Max_P Then
 Max_P = test_p
 End If
 End If
 count = count + 1
 Loop

End Sub
Sub Final_Calculations()
Dim numberx As Long, title_end2, count_v As Long, count_h As Long, title_end3 As
Variant, count_find As Integer, SE_value As Double, result As Variant
Dim endval As String, endval2 As String, Title_end As String, tstat_value As Double,
xbar As Double, stdev_x As Double, Sum_stdBeta As Double, Error_range As Variant

Worksheets("MainCalculations").Select
Range("B2").Select
count_beta = Range(Selection, Selection.End(xlToRight)).count
place_SSE = Range("A1").Offset(0, count_beta + 10).Address
SSE = place_SSE
Range("b6").Select
numberx = Range(Selection, Selection.End(xlDown)).count

'Inverse Matrix Calculation
Worksheets("MainCalculations").Select
Range("c6").Select
numberx = Range(Selection, Selection.End(xlDown)).count
Worksheets("StatisticalCalculations").Select
Range("XFD1") = count_beta
Range("XFD3") = numberx
endval2 = Range("xfd4")
endval = Range("XFD2")
Title_end = Range("XFD5")
title_end2 = Range("xfd6")
Worksheets("StatisticalCalculations").Activate
Range("h2" & ":" & endval).Select

104

 Selection.FormulaArray = _
"=MINVERSE(MMULT(TRANSPOSE(MainCalculations!b6:" & endval2 &
"),MainCalculations!b6:" & endval2 & "))"

 'Title inverse matrix
 Range("h1:" & Title_end).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h1:" & Title_end) = "X Inverse Matrix"

'Fill in chart
Worksheets("StatisticalCalculations").Range("c3") = count_beta - 1
Worksheets("StatisticalCalculations").Range("c4") = numberx - count_beta
Worksheets("StatisticalCalculations").Range("c5") = numberx - 1
Worksheets("StatisticalCalculations").Range("b4") =
Worksheets("MainCalculations").Range(SSE)
Worksheets("StatisticalCalculations").Range("b5") =
Application.WorksheetFunction.DevSq(Worksheets("MainCalculations").Range("A6:A"
& numberx + 5))
Worksheets("StatisticalCalculations").Range("g7") = numberx
Worksheets("StatisticalCalculations").Range("g8") = count_beta

'Variance-covariance matrix
count_v = 0
count_h = 0
Do Until count_h = count_beta
 Do Until count_v = count_beta
 Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + count_v,
count_h) = _
 Worksheets("StatisticalCalculations").Range("h2").Offset(count_v, count_h) *
Worksheets("StatisticalCalculations").Range("d4")
 count_v = count_v + 1
 Loop
 count_v = 0
 count_h = count_h + 1

105

Loop

'Title variance covariance matrix
 Range("h" & count_beta + 3 & ":" & title_end2).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h" & count_beta + 3 & ":" & title_end2) = "Variance-Covariance Matrix"

'Correlation matrix

count_v = 0
count_h = 0
Worksheets("StatisticalCalculations").Range("XFD11") = 3
Worksheets("StatisticalCalculations").Range("XFD12") = 3
Dim static_start As String, static_end As String, dynamic_start As String, dynamic_end
As String
Do Until count_h = count_beta - 1

 Do Until count_v = count_beta - 1

static_start = Worksheets("StatisticalCalculations").Range("XFD7")
static_end = Worksheets("StatisticalCalculations").Range("XFD8")
dynamic_start = Worksheets("StatisticalCalculations").Range("XFD9")
dynamic_end = Worksheets("StatisticalCalculations").Range("XFD10")

 Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta * 2 + 4 +
count_v, count_h) = _
 "=correl(MainCalculations!" & static_start & ":" & static_end &
",MainCalculations!" & dynamic_start & ":" & dynamic_end & ")"

 count_v = count_v + 1
 Worksheets("StatisticalCalculations").Range("XFD12") = 3 + count_v

106

 Loop

 count_v = 0
 count_h = count_h + 1
 Worksheets("StatisticalCalculations").Range("XFD11") = 3 + count_h
 Worksheets("StatisticalCalculations").Range("XFD12") = 3
Loop

'Title Correlation matrix

title_end3 = Worksheets("StatisticalCalculations").Range("XFD13")

 Range("h" & count_beta * 2 + 5 & ":" & title_end3).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 Selection.Merge
 Range("h" & count_beta * 2 + 5 & ":" & title_end3) = "Correlation Matrix"

'calculate durbin watson

Dim error_cell As String, count As Integer, Count_error As Long

 'determine which cell has error
 Do Until UCase(error_cell) = "ERROR"
 error_cell = Worksheets("MainCalculations").Range("A1").Offset(0, count_find)
 count_find = count_find + 1
 Loop
 Do Until Count_error = numberx - 1
 Worksheets("StatisticalCalculations").Range("b12").Offset(Count_error, 0) =
(Worksheets("MainCalculations").Range("A1").Offset(5 + Count_error, count_find - 1) -
_
 Worksheets("MainCalculations").Range("A1").Offset(5 + Count_error + 1,
count_find - 1)) ^ 2
 Count_error = Count_error + 1

107

 Loop

'Leverage
Dim Var_moving As String, X_inv As String

count = 0

Do Until count = numberx

 Worksheets("StatisticalCalculations").Range("XFD14") = count
 Var_moving = Worksheets("StatisticalCalculations").Range("XFD15")
 X_inv = Worksheets("StatisticalCalculations").Range("XFD16")

 Worksheets("StatisticalCalculations").Range("c11").Offset(count, 0) =
"=Sumproduct(Mmult(" & "MainCalculations!" & Var_moving & "," &
"StatisticalCalculations!" & X_inv & ")," & "MainCalculations!" & Var_moving & ")"

count = count + 1

Loop

'Studentized Residuals

count = 0

Do Until count = numberx

 Worksheets("StatisticalCalculations").Range("D11").Offset(count, 0) =
Worksheets("MainCalculations").Range("A1").Offset(5 + count, count_find - 1) / _
 (Worksheets("StatisticalCalculations").Range("D4") * (1 -
Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0))) ^ 0.5

 count = count + 1

Loop

Worksheets("StatisticalCalculations").Range("D11").Select
 Range(Selection, Selection.End(xlDown)).Select
 ActiveWorkbook.Worksheets("StatisticalCalculations").sort.SortFields.Clear
 ActiveWorkbook.Worksheets("StatisticalCalculations").sort.SortFields.Add
Key:=Range("D11"), _
 SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal

108

 With ActiveWorkbook.Worksheets("StatisticalCalculations").sort
 .SetRange Range("D11:D" & numberx + 10)
 .Header = xlNo
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With
 Range("A1").Select

'Cooks Distance
count = 0

Do Until count = numberx

 Worksheets("StatisticalCalculations").Range("F11").Offset(count, 0) =
(Worksheets("MainCalculations").Range("A1").Offset(5 + count, count_find - 1)) ^ 2 / _
 (Worksheets("StatisticalCalculations").Range("G8") *
Worksheets("StatisticalCalculations").Range("D4")) * _
 (Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0) / (1 -
Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0)) ^ 2)

 count = count + 1

Loop
 Range("G10") = "=Max(F11:F" & numberx + 10 & ")"

'P-Value Variables

count = 0

Do Until count = count_beta
SE_value = (Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 +
count, count)) ^ 0.5
tstat_value = Worksheets("MainCalculations").Range("B2").Offset(0, count) / SE_value
Worksheets("MainCalculations").Range("B5").Offset(0, count) = _
Application.WorksheetFunction.TDist(Abs(tstat_value),
Worksheets("StatisticalCalculations").Range("C4"), 1) * 2

count = count + 1

Loop

109

count = 0

'Calculate Standardized Beta's

 Sheets("MainCalculations").Select
 Cells.Select
 Range("C26").Activate
 Selection.Copy
 Sheets("StandardBeta").Select
 Range("A1").Select
 ActiveSheet.Paste
 Range("A1").Select
 Application.CutCopyMode = False
 Sheets("StandardBeta").Select
 Rows("1:5").Select
 Selection.ClearFormats
 Range("A1").Select
 count_h = 0

 Do Until count_h = count_beta - 1
 count_v = 0
 Worksheets("MainCalculations").Select
 Worksheets("MainCalculations").Range("C6").Offset(0, count_h).Select
 Range(Selection, Selection.End(xlDown)).Select
 xbar = Application.WorksheetFunction.Average(Selection)
 stdev_x = Application.WorksheetFunction.StDev(Selection)
 Worksheets("StandardBeta").Select

 Do Until count_v = numberx
 Range("C6").Offset(count_v, count_h) =
(Worksheets("MainCalculations").Range("C6").Offset(count_v, count_h) - xbar) /
stdev_x
 count_v = count_v + 1
 Loop

 count_h = count_h + 1
 Loop

Call solver_solve

count = 0

 Do Until count = count_beta - 1
 Range("C3").Offset(0, count) = Abs(Range("C2").Offset(0, count))
 count = count + 1

110

 Loop

Range("C3").Select
Range(Selection, Selection.End(xlToRight)).Select
Sum_stdBeta = Application.WorksheetFunction.Sum(Selection)

count = 0

 Do Until count = count_beta - 1
 Range("C4").Offset(0, count) = Abs(Range("C3").Offset(0, count)) / Sum_stdBeta
 count = count + 1
 Loop

 Range("C4").Select
 Range(Selection, Selection.End(xlToRight)).Select
 Selection.Copy
 Worksheets("MainCalculations").Select
 Worksheets("MainCalculations").Range("C4").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
 Range("A4") = "Standard Beta's"

'run solver against squared residuals

 'copy and paste
 Range("B14").Select
 Sheets("MainCalculations").Select
 Cells.Select
 Selection.Copy
 Sheets("BPtest").Select
 Range("A1").Select
 ActiveSheet.Paste
 Sheets("MainCalculations").Select
 Range("D87").Select
 ActiveWindow.SmallScroll Down:=-48
 Application.CutCopyMode = False
 Range("A1").Offset(5, count_find).Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.Copy
 Sheets("BPtest").Select
 Range("A6").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Range("A1").Select

111

Worksheets("BPtest").Activate

SolverOptions Precision:=0.001
solver_range = Worksheets("StatisticalCalculations").Range("XFD19")
SolverOk SetCell:=SSE, MaxMinVal:=2, ValueOf:="0",
ByChange:=Range(solver_range)
result = SolverSolve(True, True)
SolverSolve UserFinish:=True

'Get SSR(resid) and R-sq (resid)
Worksheets("StatisticalCalculations").Range("f5") =
Application.WorksheetFunction.DevSq(Worksheets("BPtest").Range("A6:A" & numberx
+ 5)) _
- Worksheets("BPtest").Range(SSE)
Worksheets("StatisticalCalculations").Range("f4") =
Worksheets("StatisticalCalculations").Range("f5") / _
Application.WorksheetFunction.DevSq(Worksheets("BPtest").Range("A6:A" & numberx
+ 5))

'Jaque-Berra test
Worksheets("StatisticalCalculations").Range("xfd17") = count_find
Error_range = Worksheets("StatisticalCalculations").Range("xfd18")
Worksheets("StatisticalCalculations").Range("g6") = "=JB_test(MainCalculations!" &
Error_range & ")"

'Durbin-Watson test stat
Worksheets("StatisticalCalculations").Range("E8") = "=sum(B12:B" & numberx + 10 &
")/B4"

'AD Test

Worksheets("StatisticalCalculations").Range("E6") = "=AD(MainCalculations!" &
Error_range & ")"

'KS test
Worksheets("StatisticalCalculations").Range("E7") =
"=KS(StatisticalCalculations!XFA1:XFA10000,D11:D" & numberx + 10 & ")"

Worksheets("MainCalculations").Select
End Sub
Public Function JB_test(Normal_test_vals As Range) As Variant

112

Dim Norm_test() As Double

Norm_testR = Normal_test_vals.Value2
n = UBound(Norm_testR, 1)

ReDim Norm_test(1 To n)

count = 1

Do Until count = n + 1
Norm_test(count) = Norm_testR(count, 1)
count = count + 1
Loop

norm_test_ave = Application.WorksheetFunction.Average(Norm_test)

count = 1

Do Until count = n + 1

s_top = s_top + (Norm_test(count) - norm_test_ave) ^ 3
s_bottom = s_bottom + (Norm_test(count) - norm_test_ave) ^ 2
k_top = k_top + (Norm_test(count) - norm_test_ave) ^ 4
k_bottom = k_bottom + (Norm_test(count) - norm_test_ave) ^ 2
count = count + 1
Loop

S = (s_top * 1 / n) / ((s_bottom * 1 / n) ^ (3 / 2))
K = (1 / n * k_top) / ((1 / n * k_bottom) ^ 2) - 3

JB_test = n / 6 * (S ^ 2 + 1 / 4 * K ^ 2)

End Function

Public Function KS(Actual As Range, Test As Range) As Variant
Application.Volatile

Dim ProbAct() As Double
Dim ProbSim() As Double
Dim nA As Integer
Dim nS As Integer
Dim nLarge As Integer
Dim Act() As Double
Dim Sim() As Double

113

ActR = Actual.Value2
SimR = Test.Value2

nA = UBound(ActR, 1)
nS = UBound(SimR, 1)
ReDim ProbAct(1 To nA)
ReDim ProbSim(1 To nS)
ReDim Act(1 To nA)
ReDim Sim(1 To nS)

If nA > nS Then
 nLarge = nA
 Else
 nLarge = nS
End If

Do Until nA = count
 count = count + 1
 Act(count) = ActR(count, 1)
Loop

count = 0

Do Until nS = count
 count = count + 1
 Sim(count) = SimR(count, 1)
Loop

count = 0

Do Until count = nLarge + 1
 count = count + 1
 If count <= nA Then
 ProbAct(count) = (count) / (nA)
 End If

 If count <= nS Then
 ProbSim(count) = (count) / (nS)
 End If

Loop

Dim First As Integer

114

Dim Last As Integer
Dim i As Integer
Dim j As Integer
Dim Temp As String

 First = LBound(Sim)
 Last = UBound(Sim)
 For i = First To Last - 1
 For j = i + 1 To Last
 If Sim(i) > Sim(j) Then
 Temp = Sim(j)
 Sim(j) = Sim(i)
 Sim(i) = Temp
 End If
 Next j
 Next i

 For i = 1 To UBound(Sim)
 Debug.Print Sim(i)
 Next i

i = 0
j = 0

 First = LBound(Act)
 Last = UBound(Act)
 For i = First To Last - 1
 For j = i + 1 To Last
 If Act(i) > Act(j) Then
 Temp = Act(j)
 Act(j) = Act(i)
 Act(i) = Temp
 End If
 Next j
 Next i

 For i = 1 To UBound(Act)
 Debug.Print Act(i)
 Next i

count = 0
y = 1

Do Until x = nS
x = x + 1

115

 If Sim(x) < Act(1) Then
 Do Until Sim(x) > Act(1)
 D = ProbSim(x) - 0
 If D > DFinal Then
 DFinal = D
 End If
 x = x + 1
 Loop
 End If

 Do Until Sim(x) > Act(y) And Sim(x) < Act(y + 1) Or Sim(x) > Act(nA)
 y = y + 1
 Loop

 If Abs(Sim(x) - Act(y)) < Abs(Sim(x) - Act(y + 1)) Then
 D = Abs(ProbSim(x) - ProbAct(y))
 If D > DFinal Then
 DFinal = D
 End If
 Else
 D = Abs(ProbSim(x) - ProbAct(y + 1))
 If D > DFinal Then
 DFinal = D
 End If
 End If

Loop
KS = DFinal

End Function

Public Function AD(Normal_test_vals As Range) As Variant

Dim Norm_test() As Double, Prob() As Double
Dim S_ad As Double

Norm_testR = Normal_test_vals.Value2
n = UBound(Norm_testR, 1)

ReDim Norm_test(1 To n)
ReDim Prob(1 To n)

count = 1

116

Do Until count = n + 1
Norm_test(count) = Norm_testR(count, 1)
count = count + 1
Loop

norm_test_ave = Application.WorksheetFunction.Average(Norm_test)
norm_test_std = Application.WorksheetFunction.StDev(Norm_test)

Dim First As Integer
Dim Last As Integer
Dim i As Integer
Dim j As Integer
Dim Temp As String

 First = LBound(Norm_test)
 Last = UBound(Norm_test)
 For i = First To Last - 1
 For j = i + 1 To Last
 If Norm_test(i) > Norm_test(j) Then
 Temp = Norm_test(j)
 Norm_test(j) = Norm_test(i)
 Norm_test(i) = Temp
 End If
 Next j
 Next i

 For i = 1 To UBound(Norm_test)
 Debug.Print Norm_test(i)
 Next i

count = 1

Do Until count = n + 1
 Prob(count) = Application.WorksheetFunction.NormDist(Norm_test(count),
norm_test_ave, norm_test_std, True)
 count = count + 1
Loop

count = 1

Do Until count = n + 1
 S_ad = S_ad + ((2 * count - 1) / n) * (Log(Prob(count)) + Log(1 - Prob(n - count + 1)))
 count = count + 1

117

Loop

A_sq = -n - S_ad

AD = A_sq * (1 + 0.75 / n + 2.25 / n ^ 2)

End Function

118

Appendix G: Cooks Distance Plots

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

Co
ok

s D
ist

an
ce

Data Point Number

4 Month Cooks Distance

0
0.005

0.01
0.015

0.02
0.025

0 200 400 600 800 1000

Co
ok

s D
ist

an
ce

Data Point Number

5 Month Cooks Distance

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 200 400 600 800 1000

Co
ok

s D
ist

an
ce

Data Point Number

6 Month Cooks Distance

119

Bibliography

Andrew, D. P., Pedersen, P. M., & McEvoy, C. D. (2011). Research methods and design

in sport management. Champaign IL: Human Kinetics.

Arena, M. V., Leonard, R. S., Murray, S. E., & Younossi, O. (1994). Historical Cost

Growth of Completed Weapon System Programs. RAND Corporation, 1, 1-47.

Armstrong, J. S. (2002). Principles of forecasting a handbook for researchers and

practitioners. New York: Kluwer Academic Publishers.

Bart, J., & Fligner, M. A. (1998). Sampling and statistical methods for behavioral

ecologists. Cambridge: Cambridge University Press.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge UK:

Cambridge University Press.

Chatfield, C. (2001). Time-series forecasting. Boca Raton: Chapman & Hall/CRC.

Chen, D., & Batson, R. G. (2010). Applied integer programming: modeling and solution.

Hoboken NJ: Wiley.

Christensen, D. S., & Payne, K. (1992). CPI Stability Fact or Fiction. Journal of

Parametrics, 10, 27-40.

Cook, D. R. (1977). Detection of Influential Observation in Linear Regression.

Technometrics, 19(1), 15-18.

Department of Commerce. (n.d.). Department of Commerce. Retrieved January 20, 2012,

from http://www.commerce.gov/

Erdogmus, H. (2010). Tracking Progress through Earned Value. IEEE Computer Society,

0740-7459(10), 2-7.

120

Floudas C. A. (2001). Encyclopedia of optimization. Dordrecht: Kluwer Academic.

Gross, J. (2003). Linear regression. Berlin: Springer.

Gutin, G., & Punnen, A. P. (2002). The traveling salesman problem and its variations.

Dordrecht: Kluwer Academic Publishers.

Harshbarger, R. J., & Reynolds, J. J. (2008). Mathematical Applications: for the

Management, Life and Social Sciences (9th ed.). Boston: Houghton Mifflin

Company.

Air Force Materiel Command. (1994, April 4). Guide to Analysis of Contractor Cost

Data. Financial Management, 1, 1-103.

Keaton, C. G., White, E. D., & Unger, E. J. (2011). Using Earned Value Data to Detect

Potential Problems in Acquisition Contracts. Journal of Cost Analysis and

Parametrics, 4(2), 148-159 .

Kerzner, H. (2009). Project management a systems approach to planning, scheduling,

and controlling (10th ed.). New York: John Wiley.

Lorenz, A., Bosch, H., & Küttler, K. (2011). Implementation of Earned Value

Management tools in the Wendel stein 7-X Project. IEEEINPSS 24th Symposium

on Fusion Engineering, S04C(4), 1-4.

Makridakis, S., Hyndman, R. J., & Wheelwright, S. C. (1998). Forecasting: methods and

applications (3. ed.). New York NY: Wiley.

Mitchell, J. E., & Borchers, B. (2000). Chapter 14. High performance optimization (pp.

349-366). Dordrecht: Kluwer Academic Publishers.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series

121

analysis and forecasting. Hoboken N.J.: Wiley-Interscience.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2011). Introduction to linear

regression analysis (5th ed.). Oxford: Wiley-Blackwell.

Morin, J. M. (2010). Achieving Acquisition Excellence in the Air Force: A Financial

Management Perspective. Armed Forces Comptroller , 55(2), 8-12.

Nelder, J., & Mead, R. (1965). A Simplex Method for function minimization. The

Computer Journal, 7(4), 308-313.

Rachev, S. T. (2007). Financial econometrics: from basics to advanced modeling

techniques. Hoboken NJ: Wiley.

Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). New York: J. Wiley.

Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its applications. New

York: Springer.

Younossi, O., Arena, M. V., Leonard, R. S., Roll, C. R., Jain, A., & Sollinger, J. M.

(2007). Is weapon system cost growth increasing?: a quantitative assessment of

completed and ongoing programs. . Santa Monica: RAND.

122

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
Grad Date, Ex: 29 Mar 2012

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Ex: 04 Aug 2010 - 29 Mar 2012

4. TITLE AND SUBTITLE
Using Predictive Analytics to Detect Major Problems in Department of Defense Acquisition
Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dowling, Austin W. First Lieutenant, USAF

5d. PROJECT NUMBER
JON 12C135
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCA/ENC/12-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Mr. Steve Miller
Office of the Secretary of Defense, Cost Assessment and Program Evaluation
Room BE-829 1800 Defense Pentagon
Washington, DC 20301-1800
(703) 697-5056

10. SPONSOR/MONITOR’S ACRONYM(S)
OSD/CAPE
11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This material is declared a work of the United States Government and is not subject to copyright protection in the United States.
14. ABSTRACT

This research provides program analysts and Department of Defense (DoD) leadership with an approach to identify problems in real-time for acquisition
contracts. Specifically, we develop optimization algorithms to detect unusual changes in acquisition programs’ Earned Value data streams. The research is
focused on three questions. First, can we predict the contractor provided estimate at complete (EAC)? Second, can we use those predictions to develop an
algorithm to determine if a problem will occur in an acquisition program or sub-program? Lastly, can we provide the probability of a problem occurring
within a given timeframe? We find three of our models establish statistical significance predicting the EAC. Our four-month model predicts the EAC, on
average, within 3.1 percent and our five and six-month models predict the EAC within 3.7 and 4.1 percent. The four-month model proves to present the best
predictions for determining the probability of a problem. Our algorithms identify 70% percent of the problems within our dataset, while more than doubling
the probability of a problem occurrence compared to current tools in the cost community. Though program managers can use this information to aid analysis,
the information we provide should serve as a tool and not a replacement for in-depth analysis of their programs

15. SUBJECT TERMS
Cost, Problem, Algorithm, Simplex, Earned Value Management (EVM)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

133

19a. NAME OF RESPONSIBLE PERSON
Dr. Edward White (AFIT/ENC)

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
937-255-3636 ext 4540, Edward.white@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Abstract
	Acknowledgments
	List of Tables
	I: Introduction
	Our Contribution

	II: Literature Review
	Previous Research
	Forecasting
	Standardized Coefficients
	Stepwise Regression
	Time Series Analysis
	Cutting the Plane
	Simplex Method

	III: Methodology
	Data Source
	Data Limitations

	Overall Algorithm Flow
	Variable Selection
	Cutting the Plane
	Simplex Method
	Variable Removal

	Determine Optimum Optimization Order
	Minimizing the MAPE
	Generating Control Chart Bounds
	Validation

	IV: Results
	Model Predictions
	Control Chart

	V: Conclusions
	Discussion of Results
	Implications of Findings
	Follow on Research

	Appendix A: Example Format-1 (AEHF Program)
	Appendix B: EVM Equations (Keaton 2011)
	Appendix C: Breakout of Data
	Appendix D: Complete List of Initial Variables
	Appendix E: List and Definition of Variables for Backwards Stepwise Regression
	Appendix F: Code for Algorithm
	Appendix G: Cooks Distance Plots
	Bibliography

